
Second Edition

DAVID J. LILJA
GRETA M. LINSE

An Introduction to Data Modeling

LINEAR REGRESSION
USING R

Linear Regression

Using R

AN INTRODUCTION TO DATA MODELING
Second Edition

DAVID J. LILJA

University of Minnesota, Minneapolis

GRETA M. LINSE

Montana State University

University of Minnesota Libraries Publishing
Minneapolis, Minnesota, USA

Linear Regression Using R: An Introduction to Data Modeling (Second Edition)

Copyright © 2022 by David J. Lilja and Greta M. Linse

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Li-
cense.
You are free to:

Share – copy and redistribute the material in any medium or format
Adapt – remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.
NonCommercial – You may not use the material for commercial purposes.

Although every precaution has been taken to verify the accuracy of the information contained herein,
the author and publisher assume no responsibility for any errors or omissions. No liability is assumed
for damages that may result from the use of information contained within.

Edition: 2.0
University of Minnesota Libraries Publishing
Minneapolis, Minnesota, USA

ISBN: 978-1-946135-83-4

Visit the book web site at:
http://z.umn.edu/lrur

Preface

Goals

Interest in what has become popularly known as data mining has expanded
significantly in the past few years, as the amount of data generated contin-
ues to explode. Furthermore, computing systems’ ever-increasing capabil-
ities make it feasible to deeply analyze data in ways that were previously
available only to individuals with access to expensive, high-performance
computing systems.

Learning about the broad field of data mining really means learning
a range of statistical tools and techniques. Regression modeling is one
of those fundamental techniques, while the R programming language is
widely used by statisticians, scientists, and engineers for a broad range of
statistical analyses. A working knowledge of R is an important skill for
anyone who is interested in performing most types of data analysis.

The primary goal of this tutorial is to explain, in step-by-step detail, how
to develop linear regression models. It uses a large, publicly available data
set as a running example throughout the text and employs the R program-
ming language environment as the computational engine for developing
the models.

This tutorial will not make you an expert in regression modeling, nor
a complete programmer in R. However, anyone who wants to understand
how to extract information from data needs a working knowledge of the
basic concepts used to develop reliable regression models, and should also
know how to use R. The specific focus, casual presentation, and detailed
examples will help you understand the modeling process, using R as your
computational tool.

iii

All of the resources you will need to work through the examples in the
book are readily available on the book web site (see p. ii). Furthermore, a
fully functional R programming environment is available as a free, open-
source download [13].

Audience

Students taking university-level courses on data science, statistical model-
ing, and related topics, plus professional engineers and scientists who want
to learn how to perform linear regression modeling, are the primary audi-
ence for this tutorial. This tutorial assumes that you have at least some ex-
perience with programming, such as what you would typically learn while
studying for any science or engineering degree. However, you do not need
to be an expert programmer. In fact, one of the key advantages of R as a
programming language for developing regression models is that it is easy to
perform remarkably complex computations with only a few lines of code.

Acknowledgments

Writing a book requires a lot of time by yourself, concentrating on trying
to say what you want to say as clearly as possible. But developing and
publishing a book is rarely the result of just one person’s effort. This book
is no exception.

At the risk of omitting some of those who provided both direct and in-
direct assistance in preparing this book, I thank the following individuals
for their help: Professor Phil Bones of the University of Canterbury in
Christchurch, New Zealand, for providing me with a quiet place to work
on this text in one of the most beautiful countries in the world, and for our
many interesting conversations; Shane Nackerud and Kristi Jensen of the
University of Minnesota Libraries for their logistical and financial support
through the Libraries’ Partnership for Affordable Content grant program;
and Brian Conn, also of the University of Minnesota Libraries, for his in-
sights into the numerous publishing options available for this type of text,
and for steering me towards the Partnership for Affordable Content pro-
gram. I also want to thank my copy editor, Ingrid Case, for gently and tact-
fully pointing out my errors and inconsistencies. Any errors that remain are

iv LINEAR REGRESSION USING R

my own fault, most likely because I ignored Ingrid’s advice. Finally, none
of this would have happened without Sarah and her unwavering support.

Without these people, this book would be just a bunch of bits, moldering
away on a computer disk drive somewhere.

A Note About the Second Edition

I (D.J.L.) want to thank Professor Mark Greenwood for giving the first edi-
tion of this book a bad review. Actually, that is not completely fair. Mark is
a Professor in the Department of Mathematical Sciences at Montana State
University. He took the time to read and post a review of the first edition of
the book on a publicly available web site. He did have some nice things to
say about it, but he was the only reviewer who pointed out some significant
flaws. The best feedback he gave me, though, was an introduction to his
colleague, Greta Linse. Greta has the statistical expertise necessary to fill
in the gaps in my knowledge of this subject. She also has a unique ability
to translate what can be an esoteric topic into something understandable by
new learners of the material. Because of the significance and importance
of her contributions to this second edition, it was clear that she should be
identified as a co-author. I am very pleased to recognize her improvements
in this way.

I (G.M.L) would like to thank, Dr. D. J. Lilja for the opportunity to
revise this book and Dr. Mark Greenwood for the introduction. I have
thoroughly enjoyed working on this project. I would also like to thank my
family for their support, including our dog Oyster, who kept me company
while working on the project.

This edition improves on the first in several ways. The discussion of lin-
ear models was updated to more generalized terminology and with current
recommended conventions; some errors were corrected, specifically in the
discussion of p-values; notation was clarified and standardized; additional
code was added for visualization of residuals; minor changes were made
to smooth out the writing.

AN INTRODUCTION TO DATA MODELING v

Contents

1 Introduction 1
1.1 What is a Linear Regression Model? 2
1.2 What is R? . 4
1.3 What’s Next? . 6

2 Understand Your Data 7
2.1 Missing Values . 7
2.2 Sanity Checking and Data Cleaning 8
2.3 The Example Data . 9
2.4 Data Frames . 10
2.5 Accessing a Data Frame 13

3 Simple Linear Regression 15
3.1 Visualize the Data . 15
3.2 The Linear Model Function 17
3.3 Evaluating the Quality of the Model 18
3.4 Residual Analysis . 23

4 Multiple Linear Regression 27
4.1 Visualizing the Relationships in the Data 27
4.2 Identifying Potential Predictors 29
4.3 The Backward Elimination Process 31
4.4 An Example of the Backward Elimination Process 33
4.5 Residual Analysis . 41
4.6 When Things Go Wrong 42

vii

Contents

5 Predicting Responses 49
5.1 Data Splitting for Training and Testing 49
5.2 Training and Testing . 51
5.3 Predicting Across Data Sets 55

6 Reading Data into the R Environment 59
6.1 Reading CSV files . 59

7 Summary 65

8 A Few Things to Try Next 69

Bibliography 73

Index 77

viii LINEAR REGRESSION USING R

1 | Introduction

DATA mining is a phrase that has been popularly used to suggest the
process of finding useful information from within a large collection

of data. I like to think of data mining as encompassing a broad range of
statistical techniques and tools that can be used to extract different types
of information from your data. Which particular technique or tool to use
depends on your specific goals.

One of the most fundamental of the broad range of data mining tech-
niques that have been developed is regression modeling. Regression mod-
eling is simply generating a mathematical model from measured data. This
model is said to explain an output value given a set of input values. Linear
regression modeling is a specific form of regression modeling that assumes
that the output can be explained using a linear combination of the input
values.

A common goal for developing a regression model is to predict what the
output value of a system should be for a new set of input values, given that
you have a collection of data about similar systems. For example, as you
gain experience driving a car, you begun to develop an intuitive sense of
how long it might take you to drive somewhere if you know the type of
car, the weather, an estimate of the traffic, the distance, the condition of
the roads, and so on. What you really have done to make this estimate of
driving time is constructed a multiple linear regression model in your mind.
The inputs to your model are the type of car, the weather, etc. The output
is how long it will take you to drive from one point to another. When
you change any of the inputs, such as a sudden increase in traffic, you
automatically re-estimate how long it will take you to reach the destination.

This type of model building and estimating is precisely what we are go-

1

CHAPTER 1. INTRODUCTION

ing to learn to do more formally in this tutorial. As a concrete example, we
will use real performance data obtained from thousands of measurements
of computer systems to develop a regression model using the R statistical
software package. You will learn how to develop the model, how to evalu-
ate how well it fits the data, and how to interpret the results. You also will
learn how to use it to predict the performance of other computer systems.

As you go through this tutorial, remember that what you are developing
is just a model. It will hopefully be useful in understanding the system and
in predicting future results. However, do not confuse a model with the real
system. The real system will always produce the correct results, regardless
of what the model may say the results should be.

1.1 || What is a Linear Regression Model?

Suppose that we have measured the performance of several different com-
puter systems using some standard benchmark program. We can organize
these measurements into a table, such as the example data shown in the
n ⇥ k dimension Table 1.1. The details of each system are recorded in a
single row. Since we measured the performance of n different systems, we
need n rows in the table. Each row is called a single “observation”.

Table 1.1: An example of computer system performance data.

System Inputs Output
Clock (MHz) Cache (kB) Transistors (M) Performance

1 1500 64 2 98
2 2000 128 2.5 134
...
i
...
n 1750 32 4.5 113

The first column in this table is the index number (or name) from 1 to n
that we have arbitrarily assigned to each of the different systems measured.
Columns 2-4 are the input parameters. These are called the independent
variables for the system we will be modeling. The specific values of the

2 LINEAR REGRESSION USING R

1.1. WHAT IS A LINEAR REGRESSION MODEL?

input parameters were set by the experimenter when the system was mea-
sured, or they were determined by the system configuration. In either case,
we know what the values are and we want to measure the performance
obtained for these input values. For example, in the first system, the pro-
cessor’s clock was 1500 MHz, the cache size was 64 kbytes, and the pro-
cessor contained 2 million transistors. The last column is the performance
that was measured for this system when it executed a standard benchmark
program. We refer to this value as the output of the system. More tech-
nically, this is known as the system’s dependent variable or the system’s
response.

The goal of regression modeling is to use these k independent measure-
ments to determine a mathematical function, f(), that describes the rela-
tionship between the input parameters and the output, such as:

performance = f(Clock,Cache,Transistors) (1.1)

This function, which is just an ordinary mathematical equation, is the
regression model. A regression model can take on any form. However,
we will restrict ourselves to a function that is a linear combination of the
input parameters. We will explain later that, while the function is a linear
combination of the input parameters, the parameters themselves do not
need to be linear. This linear combination is commonly used in regression
modeling and is powerful enough to model most systems we are likely to
encounter.

In the process of developing this model, we will discover how impor-
tant each of these inputs are in determining the output value. For example,
we might find that the performance is heavily dependent on the clock fre-
quency, while the cache size and the number of transistors may be much
less important. We may even find that some of the inputs have essentially
no impact on the output making it completely unnecessary to include them
in the model. We also will be able to use the model we develop to predict
the performance we would expect to see on a system that has input values
that did not exist in any of the systems that we actually measured. For
instance, Table 1.2 shows three new systems that were not part of the set
of systems that we previously measured. We can use our regression model
to predict the performance of each of these three systems to replace the
question marks in the table.

AN INTRODUCTION TO DATA MODELING 3

CHAPTER 1. INTRODUCTION

Table 1.2: An example in which we want to predict the performance of new
systems n+ 1, n+ 2, and n+ 3 using the previously measured
results from the other n systems.

System Inputs Output
Clock (MHz) Cache (kB) Transistors (M) Performance

1 1500 64 2 98
2 2000 128 2.5 134
...
i
...
n 1750 32 4.5 113

n+ 1 2500 256 2.8 ?
n+ 2 1560 128 1.8 ?
n+ 3 900 64 1.5 ?

As a final point, note that, since the regression model is a linear com-
bination of the input values, the values of the model parameters will auto-
matically be scaled as we develop the model. As a result, the units used for
the inputs and the output are arbitrary. In fact, we can rescale the values
of the inputs and the output before we begin the modeling process and still
produce an equivalent model.

1.2 || What is R?

R is a computer language developed specifically for statistical computing.
It is actually more than that, though. R provides a complete environment
for interacting with your data. You can directly use the functions that are
provided in the environment to process your data without writing a com-
plete program. You also can write your own programs to perform opera-
tions that do not have built-in functions, or to repeat the same task multiple
times, for instance.

R is an object-oriented language that uses vectors and matrices as its ba-
sic operands. This feature makes it quite useful for working on large sets of
data using only a few lines of code. The R environment also provides ex-

4 LINEAR REGRESSION USING R

1.2. WHAT IS R?

cellent graphical tools for producing complex plots relatively easily. And,
perhaps best of all, it is free. It is an open source project developed by
many volunteers. You can learn more about the history of R, and down-
load a copy to your own computer, from the R Project web site [13].

As an example of using R, here is a copy of a simple interaction with the
R environment.

> x <- c(2,4,6,8,10,12,14,16)
> x
[1] 2 4 6 8 10 12 14 16
> mean(x)
[1] 9
> var(x)
[1] 24
>

In this listing, the “>” character indicates that R is waiting for input. The
line x <- c(2, 4, 6, 8, 10, 12, 14, 16) concatenates all of the values in
the argument into a vector and assigns that vector to the variable x. Simply
typing x by itself causes R to print the contents of the vector. Note that R
treats vectors as a matrix with a single row. Thus, the “[1]” preceding the
values is R’s notation to show that this is the first row of the matrix x. The
next line, mean(x), calls a function in R that computes the arithmetic mean
of the input vector, x. The function var(x) computes the corresponding
variance.

This book will not make you an expert in programming using the R
computer language. Developing good regression models is an interactive
process that requires you to dig in and play around with your data and your
models. Thus, I am more interested in using R as a computing environment
for doing statistical analysis than as a programming language. Instead of
teaching you the language’s syntax and semantics directly, this tutorial will
introduce what you need to know about R as you need it to perform the spe-
cific steps to develop a regression model. You should already have some
programming expertise so that you can follow the examples in the remain-
der of the book. However, you do not need to be an expert programmer.

AN INTRODUCTION TO DATA MODELING 5

CHAPTER 1. INTRODUCTION

1.3 || What’s Next?

Before beginning any sort of data analysis, you need to understand your
data. Chapter 2 describes the sample data that will be used in the examples
throughout this tutorial, and how to read this data set into the R environ-
ment. Chapter 3 introduces the simplest regression model consisting of a
single independent variable. The process used to develop a more complex
regression model with multiple independent input variables is explained in
Chapter 4. Chapter 5 then shows how to use this multiple linear regression
(MLR) model to predict the system response when given new input data.
Chapter 6 explains in more detail the routines used to read a file containing
your data into the R environment. The process used to develop a MLR
model is summarized in Chapter 7 along with some suggestions for further
reading. Finally, Chapter 8 provides some experiments you might want to
try to expand your understanding of the modeling process.

6 LINEAR REGRESSION USING R

2 | Understand Your Data

GOOD data is the basis of any sort of regression model, because we
use this data to actually construct the model. If the data is flawed,

the model will be flawed. It is the old maxim of garbage in, garbage out.
Thus, the first step in regression modeling is to ensure that your data is
reliable. There is no universal approach to verifying the quality of your
data, unfortunately. If you collect it yourself, you at least have the advan-
tage of knowing its provenance. If you obtain your data from somewhere
else, though, you depend on the source to ensure data quality. Your job
then becomes verifying your source’s reliability and correctness as much
as possible.

2.1 || Missing Values

Any large collection of data is probably incomplete. That is, it is likely
that there will be cells without values in your data table. These missing
values may be the result of an error, such as the experimenter simply for-
getting to fill in a particular entry. They also could be missing because that
particular system configuration did not have that parameter available. For
example, not every processor tested in our example data had an L2 cache.
Fortunately, R is designed to gracefully handle missing values. R uses the
notation NA to indicate that the corresponding value is Not Available.

Most of the functions in R have been written to appropriately ignore NA

values and still compute the desired result. Sometimes, however, you must
explicitly tell the function to ignore the NA values. For example, calling
the mean() function with an input vector that contains NA values causes it
to return NA as the result. To compute the mean of the input vector while

7

CHAPTER 2. UNDERSTAND YOUR DATA

ignoring the NA values, you must explicitly tell the function to remove the
NA values using mean(x, na.rm=TRUE).

2.2 || Sanity Checking and Data Cleaning

Regardless of where you obtain your data, it is important to do some sanity
checks to ensure that nothing is drastically flawed. For instance, you can
check the minimum and maximum values of key input parameters (i.e.,
columns) of your data to see if anything looks obviously wrong. One of
the exercises in Chapter 8 encourages you explore other approaches for
verifying your data. R also provides good plotting functions to quickly
obtain a visual indication of some of the key relationships in your data set.
We will see some examples of these functions in Section 3.1.

If you discover obvious errors or flaws in your data, you may have to
eliminate portions of that data. For instance, you may find that the perfor-
mance reported for a few system configurations is hundreds of times larger
than that of all of the other systems tested. Although it is possible that this
data is correct, it seems more likely that whoever recorded the data simply
made a transcription error. You may decide that you should delete those
results from your data. It is important, though, not to throw out data that
looks strange without good justification. Sometimes the most interesting
conclusions come from data that on first glance appeared flawed, but was
actually hiding an interesting and unsuspected phenomenon. This process
of checking your data and putting it into the proper format is often called
data cleaning.

It also is always appropriate to use your knowledge of the system and
the relationships between the inputs and the output to inform your model
building. For instance, from our experience, we expect that the clock rate
will be a key parameter in any regression model of computer systems per-
formance that we construct. Consequently, we will want to make sure that
our models include the clock parameter. If the modeling methodology sug-
gests that the clock is not important in the model, then we would want to
consider carefully whether the model used is the appropriate model to de-
scribe the relationship between the input parameters and the performance.
We additionally may have deeper insights into the physical system that sug-
gest how we should proceed in developing a model. We will see a specific

8 LINEAR REGRESSION USING R

2.3. THE EXAMPLE DATA

example of applying our insights about the effect of caches on system per-
formance when we begin constructing more complex models in Chapter 4.

These types of sanity checks help you feel more comfortable that your
data is valid. However, keep in mind that it is impossible to prove that
your data is flawless. As a result, you should always look at the results
of any regression modeling exercise with a healthy dose of skepticism and
think carefully about whether or not the results make sense. Trust your
intuition. If the results don’t feel right, there is quite possibly a problem
lurking somewhere in the data or in your analysis.

NOTE: The word "significant" will be avoided in this tutorial. It is a
word that is overused in statistics and as such has both too much weight
and not enough information to make it a good word to use.

2.3 || The Example Data

I obtained the input data used for developing the regression models in the
subsequent chapters from the publicly available CPU DB database [2].
This database contains design characteristics and measured performance
results for a large collection of commercial processors. The data was col-
lected over many years and is nicely organized using a common format and
a standardized set of parameters. The particular version of the database
used in this book contains information on 1,525 processors.

Many of the database’s parameters (columns) are useful in understand-
ing and comparing the performance of the various processors. Not all of
these parameters will be useful as predictors in the regression models, how-
ever. For instance, some of the parameters, such as the column labeled
Instruction set width, are not available for many of the processors. Oth-
ers, such as the Processor family, are common among several processors
and do not provide useful information for distinguishing among them. As
a result, we can eliminate these columns as possible predictors when we
develop the regression model.

On the other hand, based on our knowledge of processor design, we
know that the clock frequency has a large influence on performance. It
also seems likely that the parallelism-related parameters, specifically, the
number of threads and cores, could have a could be an important driver of
the performance, so we will keep these parameters available for possible

AN INTRODUCTION TO DATA MODELING 9

CHAPTER 2. UNDERSTAND YOUR DATA

inclusion in the regression model.
Technology-related parameters are those that are directly determined by

the particular fabrication technology used to build the processor. The num-
ber of transistors and the die size are rough indicators of the size and com-
plexity of the processor’s logic. The feature size, channel length, and FO4
(fanout-of-four) delay are related to gate delays in the processor’s logic.
Because these parameters both have a direct effect on how much process-
ing can be done per clock cycle and affect the critical path delays, at least
some of these parameters could be important in a regression model that
describes performance.

Finally, the memory-related parameters recorded in the database are the
separate L1 instruction and data cache sizes, and the unified L2 and L3
cache sizes. Because memory delays are critical to a processor’s perfor-
mance, all of these memory-related parameters have the potential for being
important in the regression models.

The reported performance metric is the score obtained from the SPEC
CPU integer and floating-point benchmark programs from 1992, 1995,
2000, and 2006 [6–8]. This performance result will be the regression
model’s output. Note that performance results are not available for every
processor running every benchmark. Most of the processors have perfor-
mance results for only those benchmark sets that were current when the
processor was introduced into the market. Thus, although there are more
than 1,500 lines in the database representing more than 1,500 unique pro-
cessor configurations, a much smaller number of results are reported for
each individual benchmark.

2.4 || Data Frames

The fundamental object used for storing tables of data in R is called a data
frame. We can think of a data frame as a way of organizing data into a
large table with a row for each system measured and a column for each
parameter. An interesting and useful feature of R is that all the columns
in a data frame do not need to be the same data type. Some columns may
consist of numerical data, for instance, while other columns contain textual
data. This feature is quite useful when manipulating large, heterogeneous
data files.

10 LINEAR REGRESSION USING R

2.4. DATA FRAMES

To access the CPU DB data, we first must read it into the R environ-
ment. R has built-in functions for reading data directly from files in the
csv (comma separated values) format and for organizing the data into data
frames. The specifics of this reading process can get a little messy, depend-
ing on how the data is organized in the file. We will defer the specifics of
reading the CPU DB file into R until Chapter 6. For now, we will use a
function called extract_data(), which was specifically written for reading
the CPU DB file.

To use this function, copy both the all-data.csv and read-data.R files
into a directory on your computer (you can download both of these files
from this book’s web site shown on p. ii). Then start the R environment
and set the local directory in R to be this directory using the File -> Change
dir pull-down menu. Then use the File -> Source R code pull-down menu
to read the read-data.R file into R. When the R code in this file completes,
you should have six new data frames in your R environment workspace:
int92.dat, fp92.dat, int95.dat, fp95.dat, int00.dat, fp00.dat, int06.dat,
and fp06.dat.

The data frame int92.dat contains the data from the CPU DB database
for all of the processors for which performance results were available for
the SPEC Integer 1992 (Int1992) benchmark program. Similarly, fp92.dat
contains the data for the processors that executed the Floating-Point 1992
(Fp1992) benchmarks, and so on. I use the .dat suffix to show that the
corresponding variable name is a data frame.

Simply typing the name of the data frame will cause R to print the entire
table. Caution: for large data sets, you generally do not want to print
the whole data set to the console. If you were to type int92.dat into the
console, for example, here are the first few lines printed. I have truncated
the output by hand to fit within the page:

nperf perf clock threads cores ...
1 9.662070 68.60000 100 1 1 ...
2 7.996196 63.10000 125 1 1 ...
3 16.363872 90.72647 166 1 1 ...
4 13.720745 82.00000 175 1 1 ...
...

The first row is the header, which shows the name of each column. Each
subsequent row contains the data corresponding to an individual processor.

AN INTRODUCTION TO DATA MODELING 11

CHAPTER 2. UNDERSTAND YOUR DATA

The first column is the index number assigned to the processor whose data
is in that row. The next columns are the specific values recorded for that
parameter for each processor.

Instead of int92.dat to look at the whole table, it is highly recom-

mended that you instead use the function head(int92.dat) which prints
out just the header and the first few rows of the corresponding data frame.
It gives you a quick glance at the data frame when you interact with your
data. Similarly tail(int92.dat) prints out the header and the last few rows
of the data frame.

Table 2.1: The names and definitions of the columns in the data frames
containing the data from CPU DB.

Column
number

Column
name Definition

1 (blank) Processor index number
2 nperf Normalized performance
3 perf SPEC performance
4 clock Clock frequency (MHz)

5 threads Number of hardware
threads available

6 cores Number of hardware
cores available

7 TDP Thermal design power

8 transistors Number of transistors on
the chip (M)

9 dieSize The size of the chip
10 voltage Nominal operating voltage
11 featureSize Fabrication feature size
12 channel Fabrication channel size
13 FO4delay Fan-out-four delay
14 L1icache Level 1 instruction cache size
15 L1dcache Level 1 data cache size
16 L2cache Level 2 cache size
17 L3cache Level 3 cache size

12 LINEAR REGRESSION USING R

2.5. ACCESSING A DATA FRAME

Table 2.1 shows the complete list of column names available in these
data frames. Note that the column names are listed vertically in this table,
simply to make them fit on the page. The first column is used for displaying
the table and for identifying observations, but is not actually a part of data
frame before import.

2.5 || Accessing a Data Frame

We access the individual elements in a data frame using square brackets to
identify a specific cell. For instance, the following accesses the data in the
cell in row 15, column 12:

> int92.dat[15,12]
[1] 180

We can also access cells by name by putting quotes around the name:

> int92.dat["71","perf"]
[1] 105.1

This expression returns the data in the row labeled 71 and the column
labeled perf. Note that this is not row 71, but rather the row that contains
the data for the processor whose row name is 71. If the data were to be
sorted, the row name will not change, but the value in the 71st row might.

We can access an entire column by leaving the first parameter in the
square brackets empty. For instance, the following prints the value in every
row for the column labeled clock:

> int92.dat[,"clock"]
[1] 100 125 166 175 190 ...

Similarly, this expression prints the values in all of the columns for row
36:

> int92.dat[36,]
nperf perf clock threads cores ...

36 13.07378 79.86399 80 1 1 ...

The functions nrow() and ncol() return the number of rows and columns,
respectively, in the data frame:

> nrow(int92.dat)
[1] 78

AN INTRODUCTION TO DATA MODELING 13

CHAPTER 2. UNDERSTAND YOUR DATA

> ncol(int92.dat)
[1] 16

Because R functions can typically operate on a vector of any length, we
can use built-in functions to quickly compute some useful results. For ex-
ample, the following expressions compute the minimum, maximum, mean,
and standard deviation of the perf column in the int92.dat data frame:
> min(int92.dat[,"perf"])
[1] 36.7
> max(int92.dat[,"perf"])
[1] 366.857
> mean(int92.dat[,"perf"])
[1] 124.2859
> sd(int92.dat[,"perf"])
[1] 78.0974

This square-bracket notation can become cumbersome when you do a
substantial amount of interactive computation within the R environment.
R provides an alternative notation using the $ (dollar sign) symbol to more
easily access a column. Repeating the previous example using this nota-
tion:
> min(int92.dat$perf)
[1] 36.7
> max(int92.dat$perf)
[1] 366.857
> mean(int92.dat$perf)
[1] 124.2859
> sd(int92.dat$perf)
[1] 78.0974

This notation says to use the data in the column named perf from the
data frame named int92.dat.

Now that we have the necessary data available in the R environment,
and some understanding of how to access and manipulate this data, we are
ready to generate our first regression model.

14 LINEAR REGRESSION USING R

3 | Simple Linear Regression

THE simplest linear regression model finds the relationship between one
input variable, which is called the predictor variable, and the output,

which is called the system’s response. This type of model is known as
a simple linear regression (SLR). To demonstrate the regression-modeling
process, we will begin developing an SLR model for the SPEC Integer
2000 (Int2000) benchmark results reported in the CPU DB data set. We
will expand this model to include multiple input variables in Chapter 4.

3.1 || Visualize the Data

The first step in this single predictor modeling process is to determine
whether or not it looks as though a linear relationship exists between the
predictor and the output value. From our understanding of computer sys-
tem design - that is, from our domain-specific knowledge - we know that
the clock frequency strongly influences a computer system’s performance.
Consequently, we must look for a roughly linear relationship between the
processor’s performance and its clock frequency. Fortunately, R provides
powerful and flexible plotting functions that let us visualize this type rela-
tionship quite easily.

This R function call:

> plot(int00.dat[,"clock"],int00.dat[,"perf"], main="Int2000",
xlab="Clock", ylab="Performance")

generates the plot shown in Figure 3.1. The first parameter in this func-
tion call is the value we will plot on the x-axis. In this case, we will plot
the clock values from the int00.dat data frame as the independent variable

15

CHAPTER 3. SIMPLE LINEAR REGRESSION

500 1000 1500 2000 2500 3000 3500

0
50
0

10
00

15
00

20
00

25
00

30
00

Int2000

Clock

P
er
fo
rm
an
ce

Figure 3.1: A scatter plot of the performance of the processors we tested
using the Int2000 benchmark versus the clock frequency.

on the x-axis. The dependent variable is the perf column from int00.dat,
which we plot on the y-axis. The function argument main="Int2000" pro-
vides a title for the plot, while xlab="Clock" and ylab="Performance" pro-
vide labels for the x- and y-axes, respectively.

This figure shows that the performance tends to increase as the clock fre-
quency increases, as we expected. If we superimpose a straight line on this
scatter plot, we see that the relationship between the predictor (the clock
frequency) and the output (the performance) is roughly linear. It is not per-
fectly linear, however. As the clock frequency increases, we see a larger
spread in performance values. Our next step is to develop a regression
model that will help us quantify the degree of linearity in the relationship
between the output and the predictor.

16 LINEAR REGRESSION USING R

3.2. THE LINEAR MODEL FUNCTION

3.2 || The Linear Model Function

We use regression models to predict a system’s behavior by extrapolating
from previously measured output values when the system is tested with
known input parameter values. The simplest regression model is a straight
line. It has the mathematical form:

ŷ = a0 + a1x1 (3.1)

where x1 is the input to the system, a0 is the y-intercept of the line, a1 is
the slope, and ŷ is the output value the model predicts. The ^ indicates a
predicted or estimated value, not the actual observed value.

R provides the function lm() that generates a linear model from the data
contained in a data frame. For this simple linear regression model, R com-
putes the values of a0 and a1 using the method of least squares. This
method finds the line that most closely fits the measured data by minimiz-
ing the distances between the line and the individual data points. For the
data frame int00.dat, we compute the model as follows:
> int00.lm <- lm(perf ~ clock, data=int00.dat)

This line of code calls the lm() function and assigns the resulting linear
model object to the variable int00.lm. We use the suffix .lm to emphasize
that this variable contains a linear model. The first argument in the lm()

function, (perf ~ clock), says that we want to find a model where the the
predictor clock explains the output perf. The second argument in the lm()

function, data=int00.dat specifies that the variables are coming from the
int00.dat data frame.

The ~ symbol ("tilde") is used to indicate the relationship between the
two variables and can be read as the word "by". So this function is mod-
eling a linear relationship for the performance by the clock speed for the
int00.dat data.

Typing the variable’s name, int00.lm, by itself causes R to print the ar-
gument with which the function lm() was called, along with the computed
coefficients for the regression model.

AN INTRODUCTION TO DATA MODELING 17

CHAPTER 3. SIMPLE LINEAR REGRESSION

> int00.lm

Call:
lm(formula = perf ~ clock, data = int00.dat)

Coefficients:
(Intercept) clock

51.7871 0.5863

In this case, the y-intercept is a0 = 51.7871 and the slope is a1 = 0.5863.
Thus, the final regression model is:

dperf = 51.7871 + 0.5863 ⇤ clock. (3.2)

The following code plots the original data along with the fitted line, as
shown in Figure 3.2. The function abline() is short for (a,b)-line. It plots
a line on the active plot window, using the slope and intercept of the linear
model given in its argument.

> plot(perf ~ clock, data=int00.dat)
> abline(int00.lm)

3.3 || Evaluating the Quality of the Model

The information we obtain by typing int00.lm shows us the regression
model’s basic values, but does not tell us anything about the model’s qual-
ity. In fact, there are many different ways to evaluate a regression model’s
quality. Many of the techniques can be rather technical, and the details of
them are beyond the scope of this tutorial. However, the function summary()

extracts some additional information that we can use to determine how
well the data fit the resulting model. When called with the model object
int00.lm as the argument, summary() produces the following information:

> summary(int00.lm)

Call:
lm(formula = perf ~ clock, data = int00.dat)

Residuals:
Min 1Q Median 3Q Max

-634.61 -276.17 -30.83 75.38 1299.52

18 LINEAR REGRESSION USING R

3.3. EVALUATING THE QUALITY OF THE MODEL

500 1000 1500 2000 2500 3000 3500

0
50
0

10
00

15
00

20
00

25
00

30
00

clock

pe
rf

Figure 3.2: The simple linear regression model superimposed on the data
from Figure 3.1.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.78709 53.31513 0.971 0.332
clock 0.58635 0.02697 21.741 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 396.1 on 254 degrees of freedom
Multiple R-squared: 0.6505, Adjusted R-squared: 0.6491
F-statistic: 472.7 on 1 and 254 DF, p-value: < 2.2e-16

Let’s examine each of the items presented in this summary in turn.
> summary(int00.lm)

Call:
lm(formula = perf ~ clock, data = int00.dat)

These first few lines simply repeat how the lm() function was called. It
is useful to look at this information to verify that you actually called the

AN INTRODUCTION TO DATA MODELING 19

CHAPTER 3. SIMPLE LINEAR REGRESSION

function as you intended.
Residuals:

Min 1Q Median 3Q Max
-634.61 -276.17 -30.83 75.38 1299.52

The residuals are the differences between the actual measured values and
the corresponding values on the fitted regression line. In Figure 3.2, each
data point’s residual is the distance that the individual data point is above
(positive residual) or below (negative residual) the regression line. Min is
the minimum residual value, which is the distance from the regression line
to the point furthest below the line. Similarly, Max is the distance from the
regression line of the point furthest above the line. Median is the median
value of all of the residuals. The 1Q and 3Q values are the points that mark
the first and third quartiles of all the sorted residual values.

How should we interpret these values? If the line is a good fit with
the data, we would expect residual values that are normally distributed
around a mean of zero. (Recall that a normal distribution is also called a
Gaussian distribution - this is the classic “bell curve”.) This distribution
implies that there is a decreasing probability of finding residual values as
we move further away from the mean. That is, a good model’s residuals
should be roughly balanced around and not too far away from the mean
of zero. Consequently, when we look at the residual values reported by
summary(), a good model would tend to have a median value near zero,
minimum and maximum values of roughly the same magnitude, and first
and third quartile values of roughly the same magnitude. For this model,
the residual values are not too far off what we would expect for Gaussian-
distributed numbers. In Section 3.4, we present a simple visual test to
determine whether the residuals appear to follow a normal distribution.
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.78709 53.31513 0.971 0.332
clock 0.58635 0.02697 21.741 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This portion of the output shows the estimated coefficient values. These
values are simply the fitted regression model values from Equation 3.2.
The Std. Error column shows the statistical standard error for each of the
coefficients. For a good model, we typically would like to see a standard

20 LINEAR REGRESSION USING R

3.3. EVALUATING THE QUALITY OF THE MODEL

error that is at least five to ten times smaller than the corresponding coeffi-
cient. For example, the standard error for clock is 21.7 times smaller than
the coefficient value (0.58635/0.02697 = 21.7). This large ratio means that
there is relatively little variability in the slope estimate, a1. The standard
error for the intercept, a0, is 53.31513, which is roughly the same as the
estimated value of 51.78709 for this coefficient. These similar values sug-
gest that there is more uncertainty in the estimate of this coefficient for this
model. This is not typically something to worry about for the y-intercept.

The ratio of the estimate to the standard error is called the "test statistic"
which in this case is a Student’s t-statistic. This is stored in the R output
in the column labeled t value. This ratio or t value is used to compute
the next column Pr(>|t|) by comparing the ratios to a t distribution with
N � 2 degrees of freedom. You won’t have to worry about calculating
these values by hand, but it is important to know where they come from to
understand what information they can provide.

The last column, labeled Pr(>|t|), shows the probability of observing
a test statistic (t value) as extreme or more extreme as the one observed,
assuming there is no linear relationship between the predictor and response
variables. This value is also known as the p-value of the coefficient.

In this example, the p-value for the slope estimate for clock is 2⇥10�16

- a tiny value. This means, that the probability of observing a t value
of 21.741 or more extreme (in absolute value), assuming there is no linear
relationship between the clock speed and the performance, is less than 2e�
16. Since this value is so small, we can say that there is strong evidence
of a linear relationship between clock speed and performance. To know if
this relationship is actually linear, we need to do further work to check the
validity of the relationship.

A similar analysis could be done for the y-intercept, however, it is typi-
cally not something very interesting. For the intercept, the test is whether
or not the intercept is zero. Only in a few specific cases is it important to
ensure the intercept is zero. Here, the p-value for the intercept is 0.332,
meaning that the probability of observing a t value of 0.971 or more ex-
treme, assuming that the true intercept value is 0, is 0.332. Since this value
is not small, we can say that there is little evidence that the true intercept
is not zero. This is due to the amount of variability in the estimates for the
intercept.

AN INTRODUCTION TO DATA MODELING 21

CHAPTER 3. SIMPLE LINEAR REGRESSION

The symbols printed to the right in this summary - that is, the asterisks,
periods, or spaces - are intended to give a quick visual indicator of the
coefficients’ p-value. The line labeled Signif. codes: gives these symbols’
meanings. Three asterisks (***) means 0 < p 0.001, two asterisks (**)
means 0.001 < p 0.01, and so on.

Residual standard error: 396.1 on 254 degrees of freedom
Multiple R-squared: 0.6505, Adjusted R-squared: 0.6491
F-statistic: 472.7 on 1 and 254 DF, p-value: < 2.2e-16

These final few lines in the output provide some statistical information
about the quality of the regression model’s fit to the data. The Residual

standard error is a measure of the total variation in the residual values.
If the residuals are distributed normally, the first and third quantiles of the
previous residuals should be about 1.5 times this standard error.

The number of degrees of freedom is the total number of measurements
or observations used to generate the model, minus the number of coeffi-
cients in the model. This example had 256 unique rows in the data frame,
corresponding to 256 independent measurements. We used this data to pro-
duce a regression model with two coefficients: the slope and the intercept.
Thus, we are left with (256 - 2 = 254) degrees of freedom.

The Multiple R-squared value is a number between 0 and 1. It is a sta-
tistical measure of how well the model describes the measured data. We
compute it by dividing the total variation that the model explains by the
data’s total variation. Multiplying this value by 100 gives a value that we
can interpret as a percentage between 0 and 100. The reported R2 of 0.6505
for this model means that 65.05% of the variability in performance is ex-
plained by the variation in clock speed (or you can say the variation in the
model). Random chance and measurement errors creep in, so the model
will never explain all data variation. Consequently, you should not ever
expect an R2 value of exactly one. In general, values of R2 that are closer
to one indicate a better-fitting model. However, a good model does not
necessarily require a large R2 value. It may still accurately predict future
observations, even with a small R2 value.

The Adjusted R-squared value is the R2 value modified to take into ac-
count the number of predictors used in the model. The adjusted R2 is
always smaller than the R2 value. We will discuss the meaning of the ad-
justed R2 in Chapter 4, when we present regression models that use more

22 LINEAR REGRESSION USING R

3.4. RESIDUAL ANALYSIS

than one predictor.
The final line shows the F-statistic. This value compares the current

model to a model that has only the intercept parameter. Because the SLR
model already has only a single additional parameter, this test gives the
same information as that on the line for the slope estimate. Note, the F-
statistic is the t value squared and has the same p-value when compared to
their respective distributions. The F-statistic (sometimes called the "over-
all F test") can contain more information for models with multiple predictor
variables, however, it still compares only the model with all of the variables
to the intercept only model. This will be discussed later in Chapter 4.

3.4 || Residual Analysis

The summary() function provides a substantial amount of information to
help us evaluate a regression model’s fit to the data used to develop that
model. To dig deeper into the model’s quality, we can analyze some addi-
tional information about the observed values compared to the values that
the model predicts. In particular, residual analysis examines these residual
values to see what they can tell us about the model’s quality.

Recall that the residual value is the difference between the actual mea-
sured value stored in the data frame and the value that the fitted regression
line predicts for that corresponding data point. Residual values greater than
zero mean that the regression model predicted a value that was too small
compared to the actual measured value, and negative values indicate that
the regression model predicted a value that was too large. A model that fits
the data well would tend to over-predict as often as it under-predicts. Thus,
if we plot the residual values, we would expect to see them distributed
normally around zero for a well-fitted model.

The following function calls produce the residuals plot for our model,
shown in Figure 3.3.

> plot(fitted(int00.lm),resid(int00.lm))

In this plot, we see that the residuals tend to increase as we move to the
right. Additionally, the residuals are not uniformly scattered above and be-
low zero. Overall, this plot tells us that using the clock as the sole predictor
in the regression model does not sufficiently or fully explain the data. In

AN INTRODUCTION TO DATA MODELING 23

CHAPTER 3. SIMPLE LINEAR REGRESSION

500 1000 1500 2000

-5
00

0
50
0

10
00

fitted(int00.lm)

re
si
d(
in
t0
0.
lm
)

Figure 3.3: The residual values versus the output values from the SLR
model developed using the Int2000 data.

general, if you observe any sort of clear trend or pattern in the residuals,
you probably need to generate a better model. This does not mean that our
simple linear regression model is useless, though. It only means that we
may be able to construct a model that produces tighter residual values and
better predictions.

Another test of the residuals uses the quantile-versus-quantile, or Q-Q,
plot. Previously we said that, if the model fits the data well, we would
expect the residuals to be normally (Gaussian) distributed around a mean
of zero. The Q-Q plot provides a nice visual indication of whether the
residuals from the model are normally distributed. The following function
calls generate the Q-Q plot shown in Figure 3.4:
> qqnorm(resid(int00.lm))
> qqline(resid(int00.lm))

If the residuals were normally distributed, we would expect the points
plotted in this figure to follow a straight line. With our model, though, we

24 LINEAR REGRESSION USING R

3.4. RESIDUAL ANALYSIS

-3 -2 -1 0 1 2 3

-5
00

0
50

0
10

00

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.4: The Q-Q plot for the SLR model developed using the Int2000
data.

see that the two ends diverge considerably from that line. This behavior
indicates that the residuals are not normally distributed. The manner in
which the tails deviate from the reference line can indicate how the ob-
served residuals deviates from what would be expected if they were nor-
mally distributed.

In fact, this plot suggests that the distribution’s right tail is “heavier” than
what we would expect from a normal distribution and the distribution’s left
tail is “lighter” than what we would expect. This pattern is indicative of
a right-skewed distribution. This test further confirms that using only the
clock as a predictor in the model is insufficient to explain the data.

These two diagnostic plots, and two additional other plots can be ob-
tained using the plot() function with the linear model as the parameter. To
condense the plots into one frame, the first line of code indicates that the
plots should be displayed in a 2 by 2 grid. The top two plots in Figure 3.5
are the residual plots created manually above.

AN INTRODUCTION TO DATA MODELING 25

CHAPTER 3. SIMPLE LINEAR REGRESSION

> par(mfrow=c(2,2))
> plot(int00.lm)

500 1000 1500 2000

−5
00

0
50

0
10

00
15

00

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

143
140214

−3 −2 −1 0 1 2 3

−1
0

1
2

3

Theoretical Quantiles

St
an

da
rd

ize
d

re
si

du
al

s

Normal Q−Q

143
140214

500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s

Scale−Location
143

140214

0.000 0.005 0.010 0.015 0.020

−2
−1

0
1

2
3

Leverage

St
an

da
rd

ize
d

re
si

du
al

s

Cook's distance

Residuals vs Leverage

143
222140

Figure 3.5: All four default diagnostic plots for the SLR model developed
using the Int2000 data.

The “Scale-Location” plot is an alternate way of visualizing the residuals
versus fitted values from the linear regression model, however, the residu-
als are standardized and then transformed by square-root. This essentially
folds the residuals and can aid in finding patterns in the residuals.

The Residuals vs Leverage plot can be used to identify possible outliers
and will not be discussed here. However, in this plot, there are no outliers.

Our next step is to learn to develop regression models with multiple input
variables. Perhaps we will find a more complex model that is better able to
explain the data.

26 LINEAR REGRESSION USING R

4 | Multiple Linear Regression

A multiple linear regression model is a generalization of the simple lin-
ear regression model discussed in Chapter 3. It has k variables with

the form:
ŷ = a0 + a1x1 + a2x2 + ...akxk, (4.1)

where the xi values are the inputs to the system, the ai coefficients are the
model parameters computed from the measured data, and ŷ is the output
value predicted by the model. Everything we learned in Chapter 3 for one
variable models also applies to the multiple variable models. To develop
this type of multiple linear regression model (MLR), we must also learn
how to select specific predictors to include in the model.

4.1 || Visualizing the Relationships in the Data

Before beginning model development, it is useful to get a visual sense of
the relationships within the data. We can do this easily with the following
function call:
> pairs(int00.dat, gap=0.5)

The pairs() function produces the plot shown in Figure 4.1. This plot
provides a pairwise comparison of all the data in the int00.dat data frame.
The gap parameter in the function call controls the spacing between the
individual plots. Set it to zero to eliminate any space between plots.

As an example of how to read this plot, locate the box near the upper left
corner labeled perf. This is the value of the performance measured for the
int00.dat data set. The box immediately to the right of this one is a scatter
plot, with perf data on the vertical axis and clock data on the horizontal

27

CHAPTER 4. MULTIPLE LINEAR REGRESSION

nperf

0 3000 1.0 2.0 50 100 0.05 20 0 1500 5000

0
80

0
30
00

perf

clock

50
0

1.
0

2.
0

threads

cores

1.
0

4.
0

50

TDP

transistors

0
12
00

10
0 dieSize

voltage

1.
0

0.
05

featureSize

channel

0.
05

20

FO4delay

L1icache

0
60
0

0
15
00

L1dcache

L2cache

0

0 80

50
00

500 1.0 4.0 0 1200 1.0 0.05 0 600 0

L3cache

Figure 4.1: All of the pairwise comparisons for the Int2000 data frame.

axis. This is the same information we previously plotted in Figure 3.1.
By scanning through these plots, we can see any obviously linear relation-
ships between the variables. For example, we quickly observe that there
is a somewhat proportional relationship between perf and clock. Scanning
down the perf column, we also see that there might be a weakly inverse
relationship between perf and featureSize.

Notice that there is a perfect linear correlation between perf and nperf.
This relationship occurs because nperf is a simple rescaling of perf. The
reported benchmark performance values in the database - that is, the perf

values - use different scales for different benchmarks. To directly compare
the values that our models will predict, it is useful to rescale perf to the
range [0,100]. Do this quite easily, using this R code:

> max_perf <- max(int00.dat$perf)
> min_perf <- min(int00.dat$perf)
> range <- max_perf - min_perf
> int00.dat$nperf <- 100 * (int00.dat$perf - min_perf) / range

28 LINEAR REGRESSION USING R

4.2. IDENTIFYING POTENTIAL PREDICTORS

Note that this rescaling has no effect on the models we will develop, be-
cause it is a linear transformation of perf. For convenience and consistency,
we use nperf in the remainder of this tutorial.

4.2 || Identifying Potential Predictors

The first step in developing the multiple linear regression (MLR) model is
to identify all possible predictors that we could include in the model. To the
novice model developer, it may seem that we should include all variables
available in the data as predictors, because more information is likely to
be better than not enough information. However, a good regression model
explains the relationship between a system’s inputs and output as simply as
possible. Thus, we should use the smallest number of predictors necessary
to provide good predictions. Furthermore, using too many or redundant
predictors builds the random noise in the data into the model. In this sit-
uation, we obtain an over-fitted model that is very good at predicting the
outputs from the specific input data set used to train the model. It does
not accurately model the overall system’s response, though, and it will not
appropriately predict the system output for a broader range of inputs than
those on which it was trained. Redundant or unnecessary predictors also
can lead to numerical instabilities when computing the coefficients.

We must find a balance between including too few and too many predic-
tors. A model with too few predictors can produce biased predictions. On
the other hand, adding more predictors to the model will always cause the
R2 value to increase. This can confuse you into thinking that the additional
predictors generated a better model. In some cases, adding a predictor will
improve the model, so the increase in the R2 value makes sense. In some
cases, however, the R2 value increases simply because we’ve better mod-
eled the random noise.

The adjusted R2 attempts to compensate for the regular R2’s behavior
by changing the R2 value according to the number of estimated parameters
(generally the number of predictors including the intercept term) in the
model. This adjustment helps us determine whether adding a predictor
improves the fit of the model, or whether it is simply modeling the noise

AN INTRODUCTION TO DATA MODELING 29

CHAPTER 4. MULTIPLE LINEAR REGRESSION

better. It is computed as:

R2
adjusted = 1� n� 1

n�m
(1�R2) (4.2)

where n is the number of observations and m is the number of estimated
parameters (k + 1) where k is the number of predictors in the model. If
adding a new predictor to the model increases the previous model’s R2

value by more than we would expect from random fluctuations, then the
adjusted R2 will increase. Conversely, it will decrease if removing a pre-
dictor decreases the R2 by more than we would expect due to random vari-
ations. Recall that the goal is to use as few predictors as possible, while
still producing a model that explains the data well.

Because we do not know a priori which input parameters will be useful
predictors, it seems reasonable to start with all of the columns available
in the measured data as the set of potential predictors. We listed all of
the column names in Table 2.1. Before we throw all these columns into
the modeling process, though, we need to step back and consider what we
know about the underlying system, to help us find any parameters that we
should obviously exclude from the start.

There are two output columns: perf and nperf. The regression model
can have only one output, however, so we must choose only one column to
use in our model development process. As discussed in Section 4.1, nperf
is a linear transformation of perf that shifts the output range to be between
0 and 100. This range is useful for quickly obtaining a sense of future
predictions’ quality, so we decide to use nperf as our model’s output and
ignore the perf column.

Almost all the remaining possible predictors appear potentially useful in
our model, so we keep them available as potential predictors for now. The
only exception is TDP. The name of this variable, thermal design power,
does not clearly indicate whether this could be a useful predictor in our
model, so we must do a little additional research to understand it bet-
ter. We discover [10] that thermal design power is “the average amount
of power in watts that a cooling system must dissipate. Also called the
‘thermal guideline’ or ‘thermal design point,’ the TDP is provided by the
chip manufacturer to the system vendor, who is expected to build a case
that accommodates the chip’s thermal requirements.” From this definition,

30 LINEAR REGRESSION USING R

4.3. THE BACKWARD ELIMINATION PROCESS

we conclude that TDP is not really a parameter that will directly affect per-
formance. Rather, it is a specification provided by the processor’s manu-
facturer to ensure that the system designer includes adequate cooling capa-
bility in the final product. Thus, we decide not to include TDP as a potential
predictor in the regression model.

In addition to excluding some apparently unhelpful variables (such as
TDP) at the beginning of the model development process, we also should
consider whether we should include any additional parameters. For exam-
ple, the terms in a regression model add linearly to produce the predicted
output. However, the individual terms themselves can be nonlinear, such
as aix

p
i , where p does not have to be equal to one. This flexibility lets us

include additional powers of the individual variables. We should include
these non-linear terms, though, only if we have some physical reason to
suspect that the output could be a nonlinear function of a particular input.

For example, we know from our prior experience modeling processor
performance that empirical studies have suggested that cache miss rates are
roughly proportional to the square root of the cache size [5]. Consequently,
we will include terms for the square root (p = 1/2) of each cache size as
possible predictors. We must also include first-degree terms (p = 1) of
each cache size as possible predictors.

Finally, we notice that only a few of the entries in the int00.dat data
frame include values for the L3 cache (using summary(int00.dat), so we
decide to exclude the L3 cache size as a potential predictor. Exploiting this
type of domain-specific knowledge when selecting predictors ultimately
can help produce better models than blindly applying the model develop-
ment process.

Note, if we keep L3 as a predictor, only observations where this value is
not missing will be included in the model, reducing the size of the data set
from 256 to 10 systems.

The final list of potential predictors that we will make available for the
model development process is shown in Table 4.1.

4.3 || The Backward Elimination Process

We are finally ready to develop the multiple linear regression model for
the int00.dat data set. As mentioned in the previous section, we must find

AN INTRODUCTION TO DATA MODELING 31

CHAPTER 4. MULTIPLE LINEAR REGRESSION

Table 4.1: The list of potential predictors to be used in the model develop-
ment process.

clock threads cores transistors
dieSize voltage featureSize channel

FO4delay L1icache
p

L1icache L1dcachep
L1dcache L2cache

p
L2cache

the right balance in the number of predictors that we use in our model. Too
many predictors will train our model to follow the data’s random variations
(noise) too closely. Too few predictors will produce a model that may not
be as accurate at predicting future values as a model with more predictors.

We will use a process called backward elimination [1] to help decide
which predictors to keep in our model and which to exclude. In backward
elimination, we start with all possible predictors and then use lm() to com-
pute the model. We use the summary() function to find each predictor’s
p-value. For predictors whose contribution or slope is close to zero (based
on the estimate and the standard error for the term) then we will consider
removing the term. The p-value can be used to make this determination. A
large p-value means that the chance of observing the t-statistic (ratio of es-
timate to standard error) or larger, assuming the slope or estimate is zero, is
fairly likely based on random chance, and the parameter is not contributing
to the fit of the model.

If this value is larger than our predetermined threshold, we remove that
predictor from the model and fit another model excluding that parameter.
A typical threshold for keeping predictors in a model is p = 0.05, meaning
that there is at least a 95 percent chance that the predictor is meaningful. A
threshold of p = 0.10 also is not unusual. While a specific threshold can
be used to determine if a p-value is “large”, there may be reasons to keep
a term in the model if a p-value is only slightly larger than the criteria. We
repeat this process until the p-values of all of the predictors remaining in
the model are below our threshold.

Note that backward elimination is not the only approach to developing
regression models. A complementary approach is forward selection. In
this approach, we successively add potential predictors to the regression
model as long as their p-values in the computed model remain below the

32 LINEAR REGRESSION USING R

4.4. AN EXAMPLE OF THE BACKWARD ELIMINATION PROCESS

predefined threshold. This process continues, one at a time for each poten-
tial predictor, until all of the predictors have been tested. Other approaches
include step-wise regression, all possible regressions, and automated se-
lection approaches.

All of these approaches have their advantages and disadvantages, their
supporters and detractors. I prefer the backward elimination process be-
cause it is usually straightforward to determine which parameter we should
drop at each step of the process. Determining which parameter to try at
each step is more difficult with forward selection. Backward elimination
has a further advantage, in that several parameters together may have bet-
ter predictive power than any subset of these parameters. As a result, the
backward elimination process is more likely to include these parameters as
a group in the final model than is the forward selection process.

The automated procedures have a very strong allure because, as techno-
logically savvy individuals, we tend to believe that this type of automated
process will likely test a broader range of possible predictor combinations
than we could test manually. However, these automated procedures lack
intuitive insights into the underlying physical nature of the system being
modeled. Intuition can help us answer the question of whether this is a
reasonable model to construct in the first place.

As you develop your models, continually ask yourself whether the model
“makes sense.” Does it make sense that parameter i is included but param-
eter j is excluded? Is there a physical explanation to support the inclusion
or exclusion of any potential parameter? Although the automated methods
can simplify the process, they also make it too easy for you to forget to
think about whether or not each step in the modeling process makes sense.

4.4 || An Example of the Backward Elimination

Process

We previously identified the list of possible predictors that we can include
in our models, shown in Table 4.1. We start the backward elimination pro-
cess by putting all these potential predictors into a model for the int00.dat

data frame using the lm() function.

AN INTRODUCTION TO DATA MODELING 33

CHAPTER 4. MULTIPLE LINEAR REGRESSION

> int00.lm.full <- lm(nperf ~ clock + threads + cores +
transistors + dieSize + voltage + featureSize + channel +
FO4delay + L1icache + sqrt(L1icache) + L1dcache +
sqrt(L1dcache) + L2cache + sqrt(L2cache), data=int00.dat)

This function call assigns the resulting linear model object to the vari-
able int00.lm.full. As before, we use the label .lm to remind us that this
variable is a linear model developed from the data in the corresponding
data frame, int00.dat. The suffix .full is added to indicate the model
includes all possible predictors. The arguments in the function call tell
lm() to compute a linear model that explains the output nperf as a function
of the predictors separated by the “+” signs. The argument data=int00.dat
explicitly passes to the lm() function the name of the data frame that should
be used when developing this model. It is useful to explicitly specify the
data frame that lm() should use, to avoid confusion when you manipulate
multiple models simultaneously.

The summary() function gives us a great deal of information about the
linear model we just created:
> summary(int00.lm.full)

Call:
lm(formula = nperf ~ clock + threads + cores + transistors +

dieSize + voltage + featureSize + channel + FO4delay +
L1icache +
sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache +
sqrt(L2cache),
data = int00.dat)

Residuals:
Min 1Q Median 3Q Max

-10.804 -2.702 0.000 2.285 9.809

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.108e+01 7.852e+01 -0.268 0.78927
clock 2.605e-02 1.671e-03 15.594 < 2e-16 ***
threads -2.346e+00 2.089e+00 -1.123 0.26596
cores 2.246e+00 1.782e+00 1.260 0.21235
transistors -5.580e-03 1.388e-02 -0.402 0.68897
dieSize 1.021e-02 1.746e-02 0.585 0.56084
voltage -2.623e+01 7.698e+00 -3.408 0.00117 **
featureSize 3.101e+01 1.122e+02 0.276 0.78324
channel 9.496e+01 5.945e+02 0.160 0.87361
FO4delay -1.765e-02 1.600e+00 -0.011 0.99123
L1icache 1.102e+02 4.206e+01 2.619 0.01111 *

34 LINEAR REGRESSION USING R

4.4. AN EXAMPLE OF THE BACKWARD ELIMINATION PROCESS

sqrt(L1icache) -7.390e+02 2.980e+02 -2.480 0.01593 *
L1dcache -1.114e+02 4.019e+01 -2.771 0.00739 **
sqrt(L1dcache) 7.492e+02 2.739e+02 2.735 0.00815 **
L2cache -9.684e-03 1.745e-03 -5.550 6.57e-07 ***
sqrt(L2cache) 1.221e+00 2.425e-01 5.034 4.54e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.632 on 61 degrees of freedom
(179 observations deleted due to missingness)

Multiple R-squared: 0.9652, Adjusted R-squared: 0.9566
F-statistic: 112.8 on 15 and 61 DF, p-value: < 2.2e-16

Notice a few things in this summary: First, a quick glance at the residu-
als shows that they are roughly balanced around a median of zero, which is
what we like to see in our models. Also, notice the line, (179 observations

deleted due to missingness). This tells us that in 179 of the rows in the
data frame - that is, in 179 of the processors for which performance re-
sults were reported for the Int2000 benchmark - some of the values in the
columns that we would like to use as potential predictors were missing.
These NA values caused R to automatically remove these data rows when
computing the linear model.

The disadvantage to letting the linear model remove the missing val-
ues is that we don’t know for what variable or variables they are missing,
or if there is a systematic reason for the missingness. It also makes the
adjusted-R2 values not comparable between models, as adjusted-R2 makes
the assumption that the same observations are used in both models being
compared.

So keep in mind that the processors used in each subsequent model may
change if we remove a predictor that has missing observations.

The total number of observations used in the model equals the number
of degrees of freedom remaining - 61 in this case - plus the total number of
predictors in the model. Finally, notice that the R2 and adjusted R2 values
are relatively close to one, indicating that the model explains the nperf

values well. Recall, however, that these large R2 values may simply show
us that the model is good at modeling the noise in the measurements. We
must still determine whether we should retain all these potential predictors
in the model.

To continue developing the model, we apply the backward elimination
procedure by identifying the predictor with the largest p-value. This pre-

AN INTRODUCTION TO DATA MODELING 35

CHAPTER 4. MULTIPLE LINEAR REGRESSION

dictor is FO4delay, which has a p-value of 0.99123; this value exceeds our
predetermined threshold of p = 0.05. We can use the update() function
to eliminate a given predictor and recompute the model in one step. The
notation “.~.” means that update() should keep the left- and right-hand
sides of the model the same. By including “- FO4delay,” we also tell it to
remove that predictor from the model, and call it int00.lm.2 to indicate it
is the second model, as shown in the following:

> int00.lm.2 <- update(int00.lm.full, .~. - FO4delay, data =
int00.dat)

> summary(int00.lm.2)

Call:
lm(formula = nperf ~ clock + threads + cores + transistors +

dieSize + voltage + featureSize + channel + L1icache +
sqrt(L1icache) +
L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data =
int00.dat)

Residuals:
Min 1Q Median 3Q Max

-10.795 -2.714 0.000 2.283 9.809

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.088e+01 7.584e+01 -0.275 0.783983
clock 2.604e-02 1.563e-03 16.662 < 2e-16 ***
threads -2.345e+00 2.070e+00 -1.133 0.261641
cores 2.248e+00 1.759e+00 1.278 0.206080
transistors -5.556e-03 1.359e-02 -0.409 0.684020
dieSize 1.013e-02 1.571e-02 0.645 0.521488
voltage -2.626e+01 7.302e+00 -3.596 0.000642 ***
featureSize 3.104e+01 1.113e+02 0.279 0.781232
channel 8.855e+01 1.218e+02 0.727 0.469815
L1icache 1.103e+02 4.041e+01 2.729 0.008257 **
sqrt(L1icache) -7.398e+02 2.866e+02 -2.581 0.012230 *
L1dcache -1.115e+02 3.859e+01 -2.889 0.005311 **
sqrt(L1dcache) 7.500e+02 2.632e+02 2.849 0.005937 **
L2cache -9.693e-03 1.494e-03 -6.488 1.64e-08 ***
sqrt(L2cache) 1.222e+00 1.975e-01 6.189 5.33e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.594 on 62 degrees of freedom
(179 observations deleted due to missingness)

Multiple R-squared: 0.9652, Adjusted R-squared: 0.9573
F-statistic: 122.8 on 14 and 62 DF, p-value: < 2.2e-16

We repeat this process by removing the next potential predictor with the

36 LINEAR REGRESSION USING R

4.4. AN EXAMPLE OF THE BACKWARD ELIMINATION PROCESS

largest p-value, making sure it also exceeds our predetermined threshold,
featureSize. As we repeat this process, we obtain the following sequence
of possible models.

Remove featureSize:
> int00.lm.3 <- update(int00.lm.2, .~. - featureSize,

data=int00.dat)
> summary(int00.lm.3)

Call:
Call:
lm(formula = nperf ~ clock + threads + cores + transistors +

dieSize + voltage + channel + L1icache + sqrt(L1icache) +
L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data =
int00.dat)

Residuals:
Min 1Q Median 3Q Max

-10.5548 -2.6442 0.0937 2.2010 10.0264

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.129e+01 6.554e+01 -0.477 0.634666
clock 2.591e-02 1.471e-03 17.609 < 2e-16 ***
threads -2.447e+00 2.022e+00 -1.210 0.230755
cores 1.901e+00 1.233e+00 1.541 0.128305
transistors -5.366e-03 1.347e-02 -0.398 0.691700
dieSize 1.325e-02 1.097e-02 1.208 0.231608
voltage -2.519e+01 6.182e+00 -4.075 0.000131 ***
channel 1.188e+02 5.504e+01 2.158 0.034735 *
L1icache 1.037e+02 3.255e+01 3.186 0.002246 **
sqrt(L1icache) -6.930e+02 2.307e+02 -3.004 0.003818 **
L1dcache -1.052e+02 3.106e+01 -3.387 0.001223 **
sqrt(L1dcache) 7.069e+02 2.116e+02 3.341 0.001406 **
L2cache -9.548e-03 1.390e-03 -6.870 3.37e-09 ***
sqrt(L2cache) 1.202e+00 1.821e-01 6.598 9.96e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.56 on 63 degrees of freedom
(179 observations deleted due to missingness)

Multiple R-squared: 0.9651, Adjusted R-squared: 0.958
F-statistic: 134.2 on 13 and 63 DF, p-value: < 2.2e-16

AN INTRODUCTION TO DATA MODELING 37

CHAPTER 4. MULTIPLE LINEAR REGRESSION

Remove transistors:
> int00.lm.4 <- update(int00.lm.3, .~. - transistors,

data=int00.dat)
> summary(int00.lm.4)

Call:
lm(formula = nperf ~ clock + threads + cores + dieSize + voltage +

channel + L1icache + sqrt(L1icache) + L1dcache +
sqrt(L1dcache) +
L2cache + sqrt(L2cache), data = int00.dat)

Residuals:
Min 1Q Median 3Q Max

-9.8861 -3.0801 -0.1871 2.4534 10.4863

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.789e+01 4.318e+01 -1.804 0.075745 .
clock 2.566e-02 1.422e-03 18.040 < 2e-16 ***
threads -1.801e+00 1.995e+00 -0.903 0.369794
cores 1.805e+00 1.132e+00 1.595 0.115496
dieSize 1.111e-02 8.807e-03 1.262 0.211407
voltage -2.379e+01 5.734e+00 -4.148 9.64e-05 ***
channel 1.512e+02 3.918e+01 3.861 0.000257 ***
L1icache 8.159e+01 2.006e+01 4.067 0.000128 ***
sqrt(L1icache) -5.386e+02 1.418e+02 -3.798 0.000317 ***
L1dcache -8.422e+01 1.914e+01 -4.401 3.96e-05 ***
sqrt(L1dcache) 5.671e+02 1.299e+02 4.365 4.51e-05 ***
L2cache -8.700e-03 1.262e-03 -6.893 2.35e-09 ***
sqrt(L2cache) 1.069e+00 1.654e-01 6.465 1.36e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.578 on 67 degrees of freedom
(176 observations deleted due to missingness)

Multiple R-squared: 0.9657, Adjusted R-squared: 0.9596
F-statistic: 157.3 on 12 and 67 DF, p-value: < 2.2e-16

Notice the jump in the degrees of freedom from 63 to 67. That is because
removing transistors reduced the number of observations deleted due to
missingness from 179 to 176.

Remove threads:
> int00.lm.5 <- update(int00.lm.4, .~. - threads, data=int00.dat)
> summary(int00.lm.5)

Call:
lm(formula = nperf ~ clock + cores + dieSize + voltage + channel +

L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) +
L2cache +

38 LINEAR REGRESSION USING R

4.4. AN EXAMPLE OF THE BACKWARD ELIMINATION PROCESS

sqrt(L2cache), data = int00.dat)

Residuals:
Min 1Q Median 3Q Max

-9.7388 -3.2326 0.1496 2.6633 10.6255

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.022e+01 4.304e+01 -1.864 0.066675 .
clock 2.552e-02 1.412e-03 18.074 < 2e-16 ***
cores 2.271e+00 1.006e+00 2.257 0.027226 *
dieSize 1.281e-02 8.592e-03 1.491 0.140520
voltage -2.299e+01 5.657e+00 -4.063 0.000128 ***
channel 1.491e+02 3.905e+01 3.818 0.000293 ***
L1icache 8.131e+01 2.003e+01 4.059 0.000130 ***
sqrt(L1icache) -5.356e+02 1.416e+02 -3.783 0.000329 ***
L1dcache -8.388e+01 1.911e+01 -4.390 4.05e-05 ***
sqrt(L1dcache) 5.637e+02 1.297e+02 4.346 4.74e-05 ***
L2cache -8.567e-03 1.252e-03 -6.844 2.71e-09 ***
sqrt(L2cache) 1.040e+00 1.619e-01 6.422 1.54e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.572 on 68 degrees of freedom
(176 observations deleted due to missingness)

Multiple R-squared: 0.9653, Adjusted R-squared: 0.9597
F-statistic: 172 on 11 and 68 DF, p-value: < 2.2e-16

Remove dieSize:
> int00.lm.6 <- update(int00.lm.5, .~. - dieSize, data=int00.dat)
> summary(int00.lm.6)

Call:
lm(formula = nperf ~ clock + cores + voltage + channel + L1icache +

sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache +
sqrt(L2cache),
data = int00.dat)

Residuals:
Min 1Q Median 3Q Max

-10.0240 -3.5195 0.3577 2.5486 12.0545

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.822e+01 3.840e+01 -1.516 0.133913
clock 2.482e-02 1.246e-03 19.922 < 2e-16 ***
cores 2.397e+00 1.004e+00 2.389 0.019561 *
voltage -2.358e+01 5.495e+00 -4.291 5.52e-05 ***
channel 1.399e+02 3.960e+01 3.533 0.000726 ***
L1icache 8.703e+01 1.972e+01 4.412 3.57e-05 ***
sqrt(L1icache) -5.768e+02 1.391e+02 -4.146 9.24e-05 ***

AN INTRODUCTION TO DATA MODELING 39

CHAPTER 4. MULTIPLE LINEAR REGRESSION

L1dcache -8.903e+01 1.888e+01 -4.716 1.17e-05 ***
sqrt(L1dcache) 5.980e+02 1.282e+02 4.665 1.41e-05 ***
L2cache -8.621e-03 1.273e-03 -6.772 3.07e-09 ***
sqrt(L2cache) 1.085e+00 1.645e-01 6.598 6.36e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.683 on 71 degrees of freedom
(174 observations deleted due to missingness)

Multiple R-squared: 0.9641, Adjusted R-squared: 0.959
F-statistic: 190.7 on 10 and 71 DF, p-value: < 2.2e-16

Notice the jump in the degrees of freedom from 68 to 71. That is be-
cause removing dieSize reduced the number of observations deleted due
to missingness from 176 to 174.

At this point, the p-values for all of the predictors are less than 0.02,
which is less than our predetermined threshold of 0.05. This tells us to
stop the backward elimination process. Intuition and experience tell us
that ten predictors are a rather large number to use in this type of model.
Nevertheless, all of these predictors have p-values below our threshold, so
we have no reason to exclude any specific predictor. We decide to include
all ten predictors in the final model:

dnperf =� 58.22 + 0.02482 ⇤ clock + 2.397 ⇤ cores
� 23.58 ⇤ voltage + 139.9 ⇤ channel + 87.03 ⇤ L1icache

� 576.8 ⇤
p

L1icache � 89.03 ⇤ L1dcache + 598 ⇤
p

L1dcache

� 0.008621 ⇤ L2cache + 1.085 ⇤
p

L2cache.

Looking back over the sequence of models we developed, notice that
the number of degrees of freedom in each subsequent model increases as
predictors are excluded, as expected. In some cases, the number of degrees
of freedom increases by more than one when only a single predictor is
eliminated from the model. To understand how an increase of more than
one is possible, look at the sequence of values in the lines labeled the

number of observations dropped due to missingness. These values show
how many rows the update() function dropped because the value for one
of the predictors in those rows was missing and had the NA value. When
the backward elimination process removed that predictor from the model,

40 LINEAR REGRESSION USING R

4.5. RESIDUAL ANALYSIS

at least some of those rows became ones we can use in computing the next
version of the model, thereby increasing the number of degrees of freedom.

Also notice that, as predictors drop from the model, the R2 values stay
very close to 0.965. However, the adjusted R2 value tends to increase very
slightly with each dropped predictor. This increase indicates that the model
with fewer predictors and more degrees of freedom tends to explain the
data slightly better than the previous model, which had one more predictor.
These changes in R2 values are very small, though, so we should not read
too much into them. It is possible that these changes are simply due to
random data fluctuations. Nevertheless, it is nice to see them behaving as
we expect.

Roughly speaking, the F-test compares the current model to a model
with one fewer predictor. If the current model is better than the reduced
model, the p-value will be small. In all of our models, we see that the
p-value for the F-test is quite small and consistent from model to model.
As a result, this F-test does not particularly help us discriminate between
potential models.

4.5 || Residual Analysis

To check the validity of the assumptions used to develop our model, we
can again apply the residual analysis techniques that we used to examine
the simple linear regression model in Section 3.4.

This function call:
> par(mfrow=c(2,2))
> plot(int00.lm.6)

produces the panel of plots shown in Figure 4.2. In the Residuals vs Fitted
plot (top left plot) we see that the residuals appear to be somewhat uni-
formly scattered about zero. At least, we do not see any obvious patterns
that lead us to think that the residuals are not well behaved. Consequently,
this plot gives us no reason to believe that we have produced a poor model.

In the Q-Q plot (top right plot) in Figure 4.2 we see the that residuals
roughly follow the indicated line. In this plot, we can see a bit more of
a pattern and some obvious nonlinearities, leading us to be slightly more
cautious about concluding that the residuals are normally distributed. But
one or two points that only slightly deviate from the expected values should

AN INTRODUCTION TO DATA MODELING 41

CHAPTER 4. MULTIPLE LINEAR REGRESSION

0 20 40 60 80

−1
0

−5
0

5
10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

156
144

216

−2 −1 0 1 2

−2
−1

0
1

2
3

Theoretical Quantiles

St
an

da
rd

ize
d

re
si

du
al

s

Normal Q−Q

156
144

225

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s

Scale−Location
156

144225

0.0 0.2 0.4 0.6 0.8

−3
−2

−1
0

1
2

3

Leverage

St
an

da
rd

ize
d

re
si

du
al

s
Cook's distance

1
0.5

0.5
1

Residuals vs Leverage

225

156
144

Figure 4.2: The panel of four diagnostic plots including the residuals plot
(top left plot) and the Q-Q plot (top right plot) for the MLR
model developed from the Int2000 data.

not be overly concerning. Even Q-Q plots from models drawn from normal
distributions will deviate from the expected due to random chance. Thus,
we should not reject the model based on this one test, but the results should
serve as a reminder that all models are imperfect.

4.6 || When Things Go Wrong

Sometimes when we try to develop a model using the backward elimina-
tion process, we get results that do not appear to make any sense. For
an example, let’s try to develop a multiple linear regression model for the
Int1992 data using this process. As before, we begin by including all of
the potential predictors from Table 4.1 in the model. When we try that for
Int1992, however, we obtain the following result:

> int92.lm.full <- lm(nperf ~ clock + threads + cores +
transistors + dieSize + voltage + featureSize + channel +
FO4delay + L1icache + sqrt(L1icache) + L1dcache +
sqrt(L1dcache) + L2cache + sqrt(L2cache), data=int92.dat)

42 LINEAR REGRESSION USING R

4.6. WHEN THINGS GO WRONG

> summary(int92.lm.full)

Call:
lm(formula = nperf ~ clock + threads + cores + transistors +

dieSize + voltage + featureSize + channel + FO4delay +
L1icache +
sqrt(L1icache) + L1dcache + sqrt(L1dcache) + L2cache +
sqrt(L2cache),
data = int92.dat)

Residuals:
14 15 16 17 18 19

0.4096 1.3957 -2.3612 0.1498 -1.5513 1.9575

Coefficients: (14 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.93278 6.56141 -3.952 0.0168 *
clock 0.35422 0.02184 16.215 8.46e-05 ***
threads NA NA NA NA
cores NA NA NA NA
transistors NA NA NA NA
dieSize NA NA NA NA
voltage NA NA NA NA
featureSize NA NA NA NA
channel NA NA NA NA
FO4delay NA NA NA NA
L1icache NA NA NA NA
sqrt(L1icache) NA NA NA NA
L1dcache NA NA NA NA
sqrt(L1dcache) NA NA NA NA
L2cache NA NA NA NA
sqrt(L2cache) NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.868 on 4 degrees of freedom
(72 observations deleted due to missingness)

Multiple R-squared: 0.985, Adjusted R-squared: 0.9813
F-statistic: 262.9 on 1 and 4 DF, p-value: 8.463e-05

Notice that every predictor but clock has NA for every entry. Furthermore,
we see a line that says that fourteen coefficients were “not defined because
of singularities.” This statement means that R could not compute a value
for those coefficients because of some anomalies in the data. (More techni-
cally, it could not invert the matrix used in the least-squares minimization
process.)

The first step toward resolving this problem is to notice that 72 obser-
vations were deleted due to “missingness,” leaving only four degrees of

AN INTRODUCTION TO DATA MODELING 43

CHAPTER 4. MULTIPLE LINEAR REGRESSION

freedom. We use the function nrow(int92.dat) to determine that there are
78 total rows in this data frame. These 78 separate observations sum up to
the two predictors used in the model, plus four degrees of freedom, plus
72 deleted rows. When we tried to develop the model using lm(), however,
some of our data remained unused.

To determine why these rows were excluded, we must do a bit of sanity
checking to see what data anomalies may be causing the problem. The
function table() provides a quick way to summarize a data vector, to see
if anything looks obviously out of place. Executing this function on the
clock column, we obtain the following:
> table(int92.dat$clock)

48 50 60 64 66 70 75 77 80 85 90 96 99 100 101 110
118 120 125 133 150 166 175 180 190 200 225 231 233 250 266
275 291 300 333 350

1 3 4 1 5 1 4 1 2 1 2 1 2 10 1 1
1 3 4 4 3 2 2 1 1 4 1 1 2 2 2 1
1 1 1 1

The top line shows the unique values that appear in the column. The
list of numbers directly below that line is the count of how many times
that particular value appeared in the column. For example, 48 appeared
once, while 50 appeared three times and 60 appeared four times. We see a
reasonable range of values with minimum (48) and maximum (350) values
that are not unexpected. Some of the values occur only once; the most
frequent value occurs ten times, which again does not seem unreasonable.
In short, we do not see anything obviously amiss with these results. We
conclude that the problem likely is with a different data column.

Executing the table() function on the next column in the data frame
threads produces this output:
> table(int92.dat$threads)
threads
1
78

Aha! Now we are getting somewhere. This result shows that all of the
78 entries in this column contain the same value: 1. An input variable in
which all of the elements are the same value has no predictive power in a
regression model. Variables must vary! If every row has the same value,
we have no way to distinguish one row from another. Thus, we conclude

44 LINEAR REGRESSION USING R

4.6. WHEN THINGS GO WRONG

that threads is not a useful predictor for our model and we eliminate it
as a potential predictor as we continue to develop our Int1992 regression
model.

We continue by executing table() on the column labeled cores. This
operation shows that this column also consists of only a single value, 1. Us-
ing the update() function to eliminate these two predictors from the model
gives the following:

> int92.lm.reduced <- update(int92.lm.full, .~. - threads - cores,
data=int92.dat)

> summary(int92.lm.reduced)

Call:
lm(formula = nperf ~ clock + transistors + dieSize + voltage +

featureSize + channel + FO4delay + L1icache + sqrt(L1icache) +
L1dcache + sqrt(L1dcache) + L2cache + sqrt(L2cache), data =
int92.dat)

Residuals:
14 15 16 17 18 19

0.4096 1.3957 -2.3612 0.1498 -1.5513 1.9575

Coefficients: (12 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.93278 6.56141 -3.952 0.0168 *
clock 0.35422 0.02184 16.215 8.46e-05 ***
transistors NA NA NA NA
dieSize NA NA NA NA
voltage NA NA NA NA
featureSize NA NA NA NA
channel NA NA NA NA
FO4delay NA NA NA NA
L1icache NA NA NA NA
sqrt(L1icache) NA NA NA NA
L1dcache NA NA NA NA
sqrt(L1dcache) NA NA NA NA
L2cache NA NA NA NA
sqrt(L2cache) NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.868 on 4 degrees of freedom
(72 observations deleted due to missingness)

Multiple R-squared: 0.985, Adjusted R-squared: 0.9813
F-statistic: 262.9 on 1 and 4 DF, p-value: 8.463e-05

Unfortunately, eliminating these two predictors from consideration has
not solved the problem. Notice that we still have only four degrees of free-

AN INTRODUCTION TO DATA MODELING 45

CHAPTER 4. MULTIPLE LINEAR REGRESSION

dom, because 72 observations were again eliminated. This small number
of degrees of freedom indicates that there must be at least one more column
with insufficient data.

By executing table() on the remaining columns, we find that the column
labeled L2cache has only three unique values, and that these appear in a
total of only ten rows:

> table(int92.dat$L2cache)
L2cache
96 256 512
6 2 2

Although these specific data values do not look out of place, having
only ten observations makes it impossible for lm() to compute the four-
teen necessary model coefficients. Dropping L2cache and sqrt(L2cache) as
potential predictors finally produces the type of result we expect:

> int92.lm.reduced.2 <- update(int92.lm.reduced, .~. - L2cache -
sqrt(L2cache), data=int92.dat)

> summary(int92.lm.reduced.2)

Call:
lm(formula = nperf ~ clock + transistors + dieSize + voltage +

featureSize + channel + FO4delay + L1icache + sqrt(L1icache) +
L1dcache + sqrt(L1dcache), data = int92.dat)

Residuals:
Min 1Q Median 3Q Max

-7.3233 -1.1756 0.2151 1.0157 8.0634

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -58.51730 17.70879 -3.304 0.00278 **
clock 0.23444 0.01792 13.084 6.03e-13 ***
transistors -0.32032 1.13593 -0.282 0.78018
dieSize 0.25550 0.04800 5.323 1.44e-05 ***
voltage 1.66368 1.61147 1.032 0.31139
featureSize 377.84287 69.85249 5.409 1.15e-05 ***
channel -493.84797 88.12198 -5.604 6.88e-06 ***
FO4delay 0.14082 0.08581 1.641 0.11283
L1icache 4.21569 1.74565 2.415 0.02307 *
sqrt(L1icache) -12.33773 7.76656 -1.589 0.12425
L1dcache -5.53450 2.10354 -2.631 0.01412 *
sqrt(L1dcache) 23.89764 7.98986 2.991 0.00602 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.68 on 26 degrees of freedom

46 LINEAR REGRESSION USING R

4.6. WHEN THINGS GO WRONG

(40 observations deleted due to missingness)
Multiple R-squared: 0.985, Adjusted R-squared: 0.9786
F-statistic: 155 on 11 and 26 DF, p-value: < 2.2e-16

We now can proceed with the normal backward elimination process. We
begin by eliminating the predictor that has the largest p-value above our
preselected threshold, which is transistors in this case. We continue until
all the predictors have p-values below the threshold. After completing the
backward elimination process, we find that the following predictors belong
in the final model for Int1992:

clock dieSize

Notice that we could not have expected to only have these two predictors
left in the model, just based on the p-values from the starting model. This
is due to many factors including being able to include more observations
as predictors that have missing values are removed from the model.

AN INTRODUCTION TO DATA MODELING 47

5 | Predicting Responses

PREDICTION is typically the primary goal of most regression modeling
projects. That is, the model developer wants to use the model to esti-

mate or predict the system’s response if it were operated with input values
that were never actually available in any of the measured systems. For in-
stance, we might want to use the model we developed using the Int2000
data set to predict the performance of a new processor with a clock fre-
quency, a cache size, or some other parameter combination that does not
exist in the data set. By inserting this new combination of parameter values
into the model, we can compute the new processor’s expected performance
when executing that benchmark program.

Because the model was developed using measured data, the coefficient
values necessarily are only estimates. Consequently, any predictions we
make with the model are also only estimates. The summary() function pro-
duces useful statistics about the regression model’s quality, such as the R2

and adjusted R2 values. These statistics offer insights into how well the
model explains variation in the data. The best indicator of any regression
model’s quality, however, is how well it predicts output values. The R envi-
ronment provides some powerful functions that help us predict new values
from a given model and evaluate the quality of these predictions.

5.1 || Data Splitting for Training and Testing

In Chapter 4 we used all of the data available in the int00.dat data frame
to select the appropriate predictors to include in the final regression model.
Because we computed the model to fit this particular data set, we cannot
now use this same data set to test the model’s predictive capabilities. That

49

CHAPTER 5. PREDICTING RESPONSES

would be like copying exam answers from the answer key and then using
that same answer key to grade your exam. Of course you would get a
perfect result. Instead, we must use one set of data to train the model and
another set of data to test it.

The difficulty with this train-test process is that we need separate but
similar data sets. A standard way to find these two different data sets is
to split the available data into two parts. We take a random portion of all
the available data and call it our training set. We then use this portion of
the data in the lm() function to compute the specific values of the model’s
coefficients. We use the remaining portion of the data as our testing set to
see how well the model predicts the results, compared to this test data.

For demonstration purposes, a random number seed will be set so that
the results will be reproducible every time. In practice, you will most likely
want true random results and will not want to set a seed. A seed can be any
integer value.

The following sequence of operations splits the int00.dat data set into
the training and testing sets:

> set.seed(1234)
> rows <- nrow(int00.dat)
> f <- 0.5
> upper_bound <- floor(f * rows)
> permuted_int00.dat <- int00.dat[sample(rows),]
> train.dat <- permuted_int00.dat[1:upper_bound,]
> test.dat <- permuted_int00.dat[(upper_bound+1):rows,]

After setting the seed, the second line assigns the total number of rows
in the int00.dat data frame to the variable rows. The next line assigns
to the variable f the fraction of the entire data set we wish to use for the
training set. In this case, we somewhat arbitrarily decide to use half of the
data as the training set and the other half as the testing set. The floor()

function rounds its argument value down to the nearest integer. So the line
upper_bound <- floor(f * rows) assigns the middle row’s index number to
the variable upper_bound.

The interesting action happens in the next line. The sample() function
returns a permutation of the integers between 1 and n when we give it
the integer value n as its input argument. In this code, the expression
sample(rows) returns a vector that is a permutation of the integers between
1 and rows, where rows is the total number of rows in the int00.dat data

50 LINEAR REGRESSION USING R

5.2. TRAINING AND TESTING

frame. Using this vector as the row index for this data frame gives a random
permutation of all of the rows in the data frame, which we assign to the new
data frame, permuted_int00.dat. The next two lines assign the upper por-
tion of this new data frame to the training data set and the bottom portion to
the testing data set, respectively. This randomization process ensures that
we obtain a new random selection of the rows in the train-and-test data sets
every time we execute this sequence of operations.

5.2 || Training and Testing

With the data set partitioned into two randomly selected portions, we can
train the model on the first portion, and test it on the second portion. Fig-
ure 5.1 shows the overall flow of this training and testing process. We next
explain the details of this process to train and test the model we previously
developed for the Int2000 benchmark results.

Inputs

O
utputs

int00.dat

Inputs

O
utputs

train.dat

Inputs

O
utputs

test.dat

f

lm()

predict()

-

delta

int00_new.lm

predicted.dat test.dat$nperf

Figure 5.1: The training and testing process for evaluating the predictions
produced by a regression model.

The following statement calls the lm() function to generate a regression
model using the predictors we identified in Chapter 4 and the train.dat

data frame we extracted in the previous section. It then assigns this model

AN INTRODUCTION TO DATA MODELING 51

CHAPTER 5. PREDICTING RESPONSES

to the variable int00_new.lm. We refer to this process of computing the
model’s coefficients as training the regression model.
> int00_new.lm <- lm(nperf ~ clock + cores + voltage + channel +

L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) +
L2cache + sqrt(L2cache), data = train.dat)

The predict() function takes this new model as one of its arguments. It
uses this model to compute the predicted outputs when we use the test.dat

data frame as the input, as follows:
> predicted.dat <- predict(int00_new.lm, newdata=test.dat)

We define the difference between the predicted and measured perfor-
mance for each processor i to be �i = Predictedi � Measuredi, where
Predictedi is the value predicted by the model, which is stored in the data
frame predicted.dat, and Measuredi is the actual measured performance
response, which we previously assigned to the test.dat data frame. The
following statement computes the entire vector of these �i values and as-
signs the vector to the variable delta.
> delta <- predicted.dat - test.dat$nperf

Note that we use the $ notation to select the column with the output value,
nperf, from the test.dat data frame.

The mean of these � differences for n different processors is:

�̄ =
1

n

nX

i=1

�i (5.1)

A confidence interval computed for this mean will give us some indication
of how well a model trained on the train.dat data set predicted the per-
formance of the processors in the test.dat data set. The t.test() function
computes a confidence interval for the desired confidence level of these �i

values as follows:
> t.test(delta, conf.level = 0.95)

One Sample t-test

data: delta
t = -1.0552, df = 41, p-value = 0.2975
alternative hypothesis: true mean is not equal to 0

52 LINEAR REGRESSION USING R

5.2. TRAINING AND TESTING

95 percent confidence interval:
-3.0825338 0.9668025
sample estimates:
mean of x
-1.057866

If the prediction were perfect, then �i = 0. If �i > 0, then the model
predicted that the performance would be greater than it actually was. A
�i < 0, on the other hand, means that the model predicted that the per-
formance was lower than it actually was. Consequently, if the predictions
were reasonably good, we would expect to see a tight confidence interval
around zero. In this case, we obtain a 95 percent confidence interval of
[-3.08, 0.97]. Given that nperf is scaled to between 0 and 100, this is a
reasonably tight confidence interval that includes zero. Thus, we conclude
that the model is reasonably good at predicting values in the test.dat data
set when trained on the train.dat data set.

Another way to get a sense of the predictions’ quality is to generate a
scatter plot of the �i values using the plot() function:

> plot(delta)

This function call produces the plot shown in Figure 5.2. Good predictions
would produce a tight band of values uniformly scattered around zero. In
this figure, we do see such a distribution, although there are a few outliers
that are more than ten points above or below zero.

It is important to realize that if we hadn’t set a random number seed,
the sample() function will return a different random permutation each time
we execute it. These differing permutations will partition different pro-
cessors (i.e., rows in the data frame) into the train and test sets. Thus,
if we run this experiment again with exactly the same inputs without set-
ting set.seed(1234) first, we will likely get a different confidence inter-
val and �i scatter plot. For example, when we repeat the same test five
times with identical inputs, we obtain the following confidence intervals:
[-1.94, 1.46], [-1.95, 2.68], [-2.66, 3.81], [-6.13, 0.75], [-4.21, 5.29]. Simi-
larly, varying the fraction of the data we assign to the train and test sets by
changing f = 0.5 also changes the results.

It is good practice to run this type of experiment several times and ob-
serve how the results change. If you see the results vary wildly when you
re-run these tests, you have good reason for concern. On the other hand,

AN INTRODUCTION TO DATA MODELING 53

CHAPTER 5. PREDICTING RESPONSES

0 20 40 60 80 100 120

-1
5

-1
0

-5
0

5
10

Index

de
lta

Figure 5.2: An example scatter plot of the differences between the pre-
dicted and actual performance results for the Int2000 bench-
mark when using the data-splitting technique to train and test
the model.

a series of similar results does not necessarily mean your results are good,
only that they are consistently reproducible. It is often easier to spot a bad
model than to determine that a model is good.

Based on the repeated confidence interval results and the corresponding
scatter plot, similar to Figure 5.2, we conclude that this model is reasonably
good at predicting the performance of a set of processors when the model
is trained on a different set of processors executing the same benchmark
program. It is not perfect, but it is also not too bad. Whether the differences
are large enough to warrant concern is up to you.

54 LINEAR REGRESSION USING R

5.3. PREDICTING ACROSS DATA SETS

5.3 || Predicting Across Data Sets

As we saw in the previous section, data splitting is a useful technique for
testing a regression model. If you have other data sets, you can use them
to further test your new model’s capabilities.

In our situation, we have several additional benchmark results in the
data file that we can use for these tests. As an example, we use the model
we developed from the Int2000 data to predict the Fp2000 benchmark’s
performance.

We first train the model developed using the Int2000 data, int00.lm,
using all the Int2000 data available in the int00.dat data frame. We then
predict the Fp2000 results using this model and the fp00.dat data. Again,
we assign the differences between the predicted and actual results to the
vector delta. Figure 5.3 shows the overall data flow for this training and
testing. The corresponding R commands are:

> int00.lm <- lm(nperf ~ clock + cores + voltage + channel +
L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) +
L2cache + sqrt(L2cache), data = int00.dat)

> predicted.dat <- predict(int00.lm, newdata=fp00.dat)
> delta <- predicted.dat - fp00.dat$nperf
> t.test(delta, conf.level = 0.95)

One Sample t-test

data: delta
t = 1.5231, df = 80, p-value = 0.1317
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.4532477 3.4099288
sample estimates:
mean of x
1.478341

The resulting confidence interval for the delta values contains zero and
is relatively small. This result suggests that the model developed using
the Int2000 data is reasonably good at predicting the Fp2000 benchmark
program’s results. The scatter plot in Figure 5.4 shows the resulting delta

values for each of the processors we used in the prediction. The results
tend to be randomly distributed around zero, as we would expect from a
good regression model. Note, however, that some of the values differ quite
a bit from zero. The maximum positive deviation is almost 20, and the

AN INTRODUCTION TO DATA MODELING 55

CHAPTER 5. PREDICTING RESPONSES

lm()

predict()

Inputs

O
utputs

fp00.dat

Inputs

O
utputs

int00.dat

-

delta

int00.lm

predicted.dat fp00.dat$nperf

Figure 5.3: Predicting the Fp2000 results using the model developed with
the Int2000 data.

magnitude of the largest negative value is greater than 43. The confidence
interval suggests relatively good results, but this scatter plot shows that not
all the values are well predicted.

As a final example, we use the Int2000 regression model to predict the
results of the benchmark program’s future Int2006 version. The R code to
compute this prediction is:

> int00.lm <- lm(nperf ~ clock + cores + voltage + channel +
L1icache + sqrt(L1icache) + L1dcache + sqrt(L1dcache) +
L2cache + sqrt(L2cache), data = int00.dat)

> predicted.dat <- predict(int00.lm, newdata=int06.dat)
> delta <- predicted.dat - int06.dat$nperf
> t.test(delta, conf.level = 0.95)

One Sample t-test

data: delta
t = 49.339, df = 168, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
48.87259 52.94662
sample estimates:
mean of x

50.9096

56 LINEAR REGRESSION USING R

5.3. PREDICTING ACROSS DATA SETS

0 50 100 150 200 250

−4
0

−3
0

−2
0

−1
0

0
10

20

Index

de
lta

Figure 5.4: A scatter plot of the differences between the predicted and ac-
tual performance results for the Fp2000 benchmark when pre-
dicted using the Int2000 regression model.

In this case, the confidence interval for the delta values does not include
zero. In fact, the mean value of the differences is 50.9096, which indicates
that the average of the model-predicted values is substantially larger than
the actual average value. The scatter plot shown in Figure 5.5 further con-
firms that the predicted values are all much larger than the actual values.

This example is a good reminder that models have their limits. Appar-
ently, there are more factors that affect the performance of the next gener-
ation of the benchmark programs, Int2006, than the model we developed
using the Int2000 results captures. To develop a model that better predicts
future performance, we would have to uncover those factors. Doing so
requires a deeper understanding of the factors that affect computer perfor-
mance, which is beyond the scope of this tutorial.

AN INTRODUCTION TO DATA MODELING 57

CHAPTER 5. PREDICTING RESPONSES

0 50 100 150 200

20
40

60
80

10
0

Index

de
lta

Figure 5.5: A scatter plot of the differences between the predicted and ac-
tual performance results for the Int2006 benchmark, predicted
using the Int2000 regression model.

58 LINEAR REGRESSION USING R

6 | Reading Data into the R

Environment

AS we have seen, the R environment provides some powerful functions
to quickly and relatively easily develop and test regression models.

Ironically, simply reading the data into R in a useful format can be one
of the most difficult aspects of developing a model. R does not lack good
input-output capabilities, but data often comes to the model developer in
a messy form. For instance, the data format may be inconsistent, with
missing fields and incorrectly recorded values. Getting the data into the
format necessary for analysis and modeling is often called data cleaning.
The specific steps necessary to “clean” data are heavily dependent on the
data set and are thus beyond the scope of this tutorial. Suffice it to say
that you should carefully examine your data before you use it to develop
any sort of regression model. Section 2.2 provides a few thoughts on data
cleaning.

In Chapter 2, we provided the functions used to read the example data
into the R environment, but with no explanation about how they worked. In
this chapter, we will look at these functions in detail, as specific examples
of how to read a data set into R. Of course, the details of the functions you
may need to write to input your data will necessarily change to match the
specifics of your data set.

6.1 || Reading CSV files

Perhaps the simplest format for exchanging data among computer systems
is the de facto standard comma separated values, or csv, file. R provides a

59

CHAPTER 6. READING DATA INTO THE R ENVIRONMENT

function to directly read data from a csv file and assign it to a data frame:
> processors <- read.csv("all-data.csv")

The name between the quotes is the name of the csv-formatted file to be
read. Each file line corresponds to one data record. Commas separate the
individual data fields in each record. This function assigns each data record
to a new row in the data frame, and assigns each data field to the corre-
sponding column. When this function completes, the variable processors

contains all the data from the file all-data.csv nicely organized into rows
and columns in a data frame.

If you type processors to see what is stored in the data frame, you will
get a long, confusing list of data. Typing
> head(processors)

will show a list of column headings and the values of the first six rows of
data. From this list, we can determine which columns to extract for our
model development. Although this is conceptually a simple problem, the
execution can be rather messy, depending on how the data was collected
and organized in the file.

As with any programming language, R lets you define your own func-
tions. This feature is useful when you must perform a sequence of opera-
tions multiple times on different data pieces, for instance. The format for
defining a function is:
function-name <- function(a1, a2, ...) {

R expressions
return(object)

}

where function-name is the function name you choose and a1, a2, ... is
the list of arguments in your function. The R system evaluates the expres-
sions in the body of the definition when the function is called. A function
can return any type of data object using the return() statement.

We will define a new function called extract_data to extract all the rows
that have a result for the given benchmark program from the processors

data frame. For instance, calling the function as follows:
> int92.dat <- extract_data("Int1992")
> fp92.dat <- extract_data("Fp1992")
> int95.dat <- extract_data("Int1995")

60 LINEAR REGRESSION USING R

6.1. READING CSV FILES

> fp95.dat <- extract_data("Fp1995")
> int00.dat <- extract_data("Int2000")
> fp00.dat <- extract_data("Fp2000")
> int06.dat <- extract_data("Int2006")
> fp06.dat <- extract_data("Fp2006")

extracts every row that has a result for the given benchmark program and
assigns it to the corresponding data frame, int92.dat, fp92.dat, and so on.

We define the extract_data function as follows:

extract_data <- function(benchmark) {

temp <- paste(paste("Spec",benchmark,sep=""),
"..average.base.", sep="")

perf <- get_column(benchmark,temp)

max_perf <- max(perf)
min_perf <- min(perf)
range <- max_perf - min_perf
nperf <- 100 * (perf - min_perf) / range

clock <- get_column(benchmark,"Processor.Clock..MHz.")
threads <- get_column(benchmark,"Threads.core")
cores <- get_column(benchmark,"Cores")
TDP <- get_column(benchmark,"TDP")
transistors <- get_column(benchmark,

"Transistors..millions.")
dieSize <- get_column(benchmark,"Die.size..mm.2.")
voltage <- get_column(benchmark,"Voltage..low.")
featureSize <- get_column(benchmark,

"Feature.Size..microns.")
channel <- get_column(benchmark,"Channel.length..microns.")
FO4delay <- get_column(benchmark,"FO4.Delay..ps.")
L1icache <- get_column(benchmark,

"L1..instruction...on.chip.")
L1dcache <- get_column(benchmark,"L1..data...on.chip.")
L2cache <- get_column(benchmark,"L2..on.chip.")
L3cache <- get_column(benchmark,"L3..on.chip.")

return(data.frame(nperf, perf, clock, threads, cores, TDP,
transistors, dieSize, voltage, featureSize,
channel, FO4delay, L1icache, L1dcache, L2cache,
L3cache))

}

The first line with the paste functions looks rather complicated. How-
ever, it simply forms the name of the column with the given benchmark
results. For example, when extract_data is called with Int2000 as the ar-

AN INTRODUCTION TO DATA MODELING 61

CHAPTER 6. READING DATA INTO THE R ENVIRONMENT

gument, the nested paste functions simply concatenate the strings "Spec",
"Int2000", and "..average.base.". The final string corresponds to the
name of the column in the processors data frame that contains the perfor-
mance results for the Int2000 benchmark, "SpecInt2000..average.base.".

The next line calls the function get_column, which selects all the rows
with the desired column name. In this case, that column contains the actual
performance result reported for the given benchmark program, perf. The
next four lines compute the normalized performance value, nperf, from the
perf value we obtained from the data frame. The following sequence of
calls to get_column extracts the data for each of the predictors we intend to
use in developing the regression model. Note that the second parameter in
each case, such as "Processor.Clock..MHz.", is the name of a column in the
processors data frame. Finally, the data.frame() function is a predefined
R function that assembles all its arguments into a single data frame. The
new function we have just defined, extract_data(), returns this new data
frame.

Next, we define the get_column() function to return all the data in a given
column for which the given benchmark program has been defined:

get_column <- function(x,y) {

benchmark <- paste(paste("Spec",x,sep=""),
"..average.base.", sep="")

ix <- !is.na(processors[,benchmark])
return(processors[ix,y])

}

The argument x is a string with the name of the benchmark program, and y

is a string with the name of the desired column. The nested paste() func-
tions produce the same result as the extract_data() function. The is.na()

function performs the interesting work. This function returns a vector with
“1” values corresponding to the row numbers in the processors data frame
that have NA values in the column selected by the benchmark index. If there
is a value in that location, is.na() will return a corresponding value that
is a 0. Thus, is.na indicates which rows are missing performance results
for the benchmark of interest. Inserting the exclamation point in front of
this function complements its output. As a result, the variable ix will con-
tain a vector that identifies every row that contains performance results for
the indicated benchmark program. The function then extracts the selected

62 LINEAR REGRESSION USING R

6.1. READING CSV FILES

rows from the processors data frame and returns them.
These types of data extraction functions can be somewhat tricky to write,

because they depend so much on the specific format of your input file. The
functions presented in this chapter are a guide to writing your own data
extraction functions.

AN INTRODUCTION TO DATA MODELING 63

7 | Summary

LINEAR regression modeling is one of the most basic of a broad collec-
tion of data mining techniques. It can demonstrate the relationships

between the inputs to a system and the corresponding output. It also can
be used to predict the output given a new set of input values. While the
specifics for developing a regression model will depend on the details of
your data, there are several key steps to keep in mind when developing a
new model using the R programming environment:

1. Read your data into the R environment.

As simple as it sounds, one of the trickiest tasks oftentimes is simply
reading your data into R. Because you may not have controlled how
data was collected, or in what format, be prepared to spend some
time writing new functions to parse your data and load it into an R
data frame. Chapter 6 provides an example of reading a moderately
complicated csv file into R.

2. Sanity check your data.

Once you have your data in the R environment, perform some san-
ity checks to make sure that there is nothing obviously wrong with
the data. The types of checks you should perform depend on the
specifics of your data. Some possibilities include:

• Finding the values’ minimum, maximum, average, and stan-
dard deviation in each data frame column.

• Looking for any parameter values that seem suspiciously out-
side the expected limits.

65

CHAPTER 7. SUMMARY

• Determining the fraction of missing (NA) values in each column
to ensure that there is sufficient data available.

• Determining the frequency of categorical parameters, to see if
any unexpected values pop up.

• Any other data-specific tests.

Ultimately, you need to feel confident that your data set’s values are
reasonable and consistent.

3. Visualize your data.

It is always good to plot your data, to get a basic sense of its shape
and ensure that nothing looks out of place. For instance, you may ex-
pect to see a somewhat linear relationship between two parameters.
If you see something else, such as a horizontal line, you should inves-
tigate further. Your assumption about a linear relationship could be
wrong, or the data may be corrupted (see item no. 2 above). Or per-
haps something completely unexpected is going on. Regardless, you
must understand what might be happening before you begin devel-
oping the model. The pairs() function is quite useful for performing
this quick visual check, as described in Section 4.1.

4. Identify the potential predictors.

Before you can begin the backward elimination process, you must
identify the set of all possible predictors that could go into your
model. In the simplest case, this set consists of all of the available
columns in your data frame. However, you may know that some
of the columns will not be useful, even before you begin construct-
ing the model. For example, a column containing only a few valid
entries probably is not useful in a model. Your knowledge of the
system may also give you good reason to eliminate a parameter as a
possible predictor, much as we eliminated TDP as a possible predic-
tor in Section 4.2, or to include some of the parameters’ non-linear
functions as possible predictors, as we did when we added the square
root of the cache size terms to our set of possible predictors.

If some entries only have values for a few predictors, it is possible
that you may also want to remove those observations. Observations

66 LINEAR REGRESSION USING R

with missing values will only be useful in building a model with
predictors for which the entry has values.

5. Select the predictors.

Once you have identified the potential predictors, use the backward
elimination process described in Section 4.3 to select the predictors
you’ll include in the final model, based on the p-value threshold you
decide to use.

6. Validate the model.

Examine your model’s R2 value and the adjusted-R2 value. Use
residual analysis to further examine the model’s quality. You also
should split your data into training and testing sets, and then see
how well your model predicts values from the test set.

If you intend on splitting your data into a training and testing data
set, do that first, don’t fit a model using all of the data before deciding
to train and test.

7. Predict.

Now that you have a model that you feel appropriately explains your
data, you can use it to predict previously unknown output values.

A deep body of literature is devoted to both statistical modeling and the
R language. If you want to learn more about R as a programming lan-
guage, many good books are available, including [11, 12, 15, 16]. These
books focus on specific statistical ideas and use R as the computational
language [1, 3, 4, 14]. Finally, this book [9] gives an introduction to com-
puter performance measurement.

As you continue to develop your data-mining skills, remember that what
you have developed is only a model. Ideally, it is a useful tool for ex-
plaining the variations in your measured data and understanding the re-
lationships between inputs and output. But like all models, it is only an
approximation of the real underlying system, and is limited in what it can
tell us about that system. Proceed with caution.

AN INTRODUCTION TO DATA MODELING 67

8 | A Few Things to Try Next

HERE are a few suggested exercises to help you learn more about re-
gression modeling using R.

1. Show how you would clean the data set for one of the selected bench-
mark results (Int1992, Int1995, etc.). For example, for every column
in the data frame, you could:

• Compute the average, variance, minimum, and maximum.

• Sort the column data to look for outliers or unusual patterns.

• Determine the fraction of NA values for each column.

How else could you verify that the data looks reasonable?

2. Plot the processor performance versus the clock frequency for each
of the benchmark results, similar to Figure 3.1.

3. Develop a simple linear regression (SLR) model for all the bench-
mark results. What input variable should you use as the predictor?

4. Superimpose your SLR models on the corresponding scatter plots of
the data (see Figure 3.2).

5. Evaluate the quality of the SLR models by discussing the residuals,
the p-values of the coefficients, the residual standard errors, the R2

values, the F -statistic, and by performing appropriate residual anal-
ysis.

6. Generate a pair-wise comparison plot for each of the benchmark re-
sults, similar to Figure 4.1.

69

CHAPTER 8. A FEW THINGS TO TRY NEXT

7. Develop a multiple linear regression (MLR) model for each of the
benchmark results. Which predictors are the same and which are dif-
ferent across these models? What other similarities and differences
do you see across these models?

8. Evaluate the MLR models’ quality by discussing the residuals, the p-
values of the coefficients, the residual standard errors, the R2 values,
the F -statistic, and by performing appropriate residual analysis.

9. Use the regression models you’ve developed to complete the follow-
ing tables, showing how well the models from each row predict the
benchmark results in each column. Specifically, fill in the x and y
values so that x is the mean of the delta values for the predictions
and y is the width of the corresponding 95 percent confidence in-
terval. You need only predict forwards in time. For example, it is
reasonable to use the model developed with Int1992 data to predict
Int2006 results, but it does not make sense to use a model developed
with Int2006 data to predict Int1992 results.

Int1992 Int1995 Int2000 Int2006

Int1992 x (± y) x (± y) x (± y) x (± y)
Int1995 x (± y) x (± y) x (± y)
Int2000 x (± y) x (± y)
Int2006 x (± y)
Fp1992 x (± y) x (± y) x (± y) x (± y)
Fp1995 x (± y) x (± y) x (± y)
Fp2000 x (± y) x (± y)
Fp2006 x (± y)

70 LINEAR REGRESSION USING R

Fp1992 Fp1995 Fp2000 Fp2006

Int1992 x (± y) x (± y) x (± y) x (± y)
Int1995 x (± y) x (± y) x (± y)
Int2000 x (± y) x (± y)
Int2006 x (± y)
Fp1992 x (± y) x (± y) x (± y) x (± y)
Fp1995 x (± y) x (± y) x (± y)
Fp2000 x (± y) x (± y)
Fp2006 x (± y)

10. What can you say about these models’ predictive abilities, based on
the results from the previous problem? For example, how well does
a model developed for the integer benchmarks predict the same-year
performance of the floating-point benchmarks? What about predic-
tions across benchmark generations?

11. In the discussion of data splitting, we defined the value f as the
fraction of the complete data set used in the training set. For the
Fp2000 data set, plot a 95 percent confidence interval for the mean
of delta for f = [0.1, 0.2, ..., 0.9]. What value of f gives the best
result (i.e., the smallest confidence interval)? Repeat this test n = 5
times to see how the best value of f changes.

12. Repeat the previous problem, varying f for all the other data sets.

AN INTRODUCTION TO DATA MODELING 71

Bibliography

[1] Peter Dalgaard. Introductory statistics with R. Springer, 2008.

[2] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and
Mark Horowitz. CPU DB: Recording microprocessor history. Com-
munications of the ACM, 55(4):55–63, 2012.

[3] Andy P. Field, Jeremy Miles, and Zoe Field. Discovering statistics
using R. Sage Publications, 2012.

[4] Frank E Harrell. Regression modeling strategies. Springer, 2015.

[5] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. Cache
miss behavior: Is it

p
(2)? In ACM International Conference on

Computing Frontiers, pages 313–320, 2006.

[6] John L Henning. SPEC CPU2000: Measuring cpu performance in
the new millennium. IEEE Computer Magazine, 33(7):28–35, 2000.

[7] John L. Henning. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, September
2006.

[8] John L. Henning. SPEC CPU suite growth: An historical perspective.
ACM SIGARCH Computer Architecture News, 35(1):65–68, March
2007.

[9] David J Lilja. Measuring computer performance. Cambridge Uni-
versity Press, 2000.

73

[10] PC Magazine. Pc magazine encyclopedia: Definition of
TDP. http://www.pcmag.com/encyclopedia/term/
60759/tdp, 2015. Accessed: 2015-10-22.

[11] Norman S Matloff. The art of R programming. No Starch Press,
2011.

[12] Norman S Matloff. Parallel computing for data science. CRC Press,
2015.

[13] R-project.org. The R project for statistical computing. https://
www.r-project.org/, 2021. Accessed: 2021-09-21.

[14] Nicole M Radziwill. Statistics (The Easier Way) with R: An informal
text on applied statistics. Lapis Lucera, 2015.

[15] Paul Teetor and Michael Kosta Loukides. R cookbook. O’Reilly
Media, 2011.

[16] Hadley Wickham. Advanced R. Chapman and Hall/CRC Press, 2014.

74 LINEAR REGRESSION USING R

About the Authors

David J. Lilja received his Ph.D. and M.S. degrees in Electrical Engineer-
ing from the University of Illinois at Urbana-Champaign, and a B.S. in
Computer Engineering from Iowa State University in Ames. He is a Profes-
sor of Electrical and Computer Engineering at the University of Minnesota
in Minneapolis. He also serves as a member of the graduate faculties in
Computer Science and Scientific Computation. He has worked as a hard-
ware development engineer at Tandem Computers in Cupertino, California,
a visiting engineer in the Hardware Performance Analysis group at IBM in
Rochester, Minnesota, and a visiting professor at the University of Western
Australia in Perth and the University of Canterbury in Christchurch, New
Zealand. He was elected a Fellow of the Institute of Electrical and Elec-
tronics Engineers (IEEE) and the American Association for the Advance-
ment of Science (AAAS). His main research interests include computer ar-
chitecture, computer systems performance analysis, and high-performance
storage systems.

Greta M. Linse received her M.S degrees in Mathematics and Statistics
from Montana State University in Bozeman, Montana, and a B.S. in Math-
ematics from Randolph-Macon Woman’s College in Lynchburg, Virginia
(now known as Randolph College). She currently has a dual appointment
as the Assistant Director of Statistical Consulting and Research Services
(SCRS) and as the Project Manager for the Human Ecology Learning and
Problem Solving Lab (HELPS Lab) both at Montana State University. Dur-
ing the summer she also teaches Statistical Methods for the Data Analytics
program with the College of Business at the University of Montana. In ad-
dition, she provides technical editing and statistical consulting through her
business, Great Lines Writing and Consulting Services. Her main interests
include working on a wide variety of statistical and technical projects, opti-
mizing reporting through scripting, promoting the use of R and RStudio for
statistical analysis and reproducible research, and developing the technical
writing skills of others.

AN INTRODUCTION TO DATA MODELING 75

Index

backward elimination, 32, 35,
40, 42, 47, 67

coefficients, 17, 20–22, 27, 43,
46, 49, 52, 69, 70

comma separated values, 11, 59
complement operation, 62
concatenate, c(), 5
confidence interval, 52–54, 56,

57, 70, 71
CPU DB, 9, 15
csv, 11, 59, 65

data cleaning, 8, 59, 69
data field, 60
data frame, 10, 13, 14, 27, 34,

49, 60, 62
data mining, 1, 65
data splitting, 49, 55, 67, 71
data visualization, 66
degrees of freedom, 22, 35, 40,

41, 44, 46
dependent variable, 3, 16

F-statistic, 23, 69, 70
F-test, 41

function definition, 60

Gaussian distribution, 20, 24

independent variables, 2, 15
intercept, 18, 21

labels, 16
least squares, 17

maximum, 14
mean, 5, 14, 52
median, 20
minimum, 14
missing values, 7
missingness, 35, 40, 43
multiple linear regression, MLR,

1, 27, 29, 31, 42, 70

normal distribution, 20, 24, 41

outliers, 53
over-fitted, 29

p-value, 21, 22, 32, 35, 37, 40,
41, 47, 67, 69, 70

permutation, 50, 53

77

prediction, 29, 49, 52, 55, 56,
67, 70, 71

predictor, 15, 17, 69
predictors, 9, 27, 29–31, 40, 62,

66, 70

quantile-versus-quantile (Q-Q),
24, 25, 41

quantiles, 22
quartiles, 20
quotes, 13

R functions
NA, 7, 35, 40, 43, 62
na.rm, 8
$, 14
[], 13
abline(), 18
c(), 5
data.frame(), 61
fitted(), 23, 41
floor(), 50
function(), 60–62
head(), 12, 60
is.na(), 62
lm(), 17, 34, 42, 52, 55, 56
max(), 14, 28, 61
mean(), 5, 7, 14
mfrow(), 26
min(), 14, 28, 61
ncol(), 13
nrow(), 13, 50
pairs(), 27
par(), 26
paste(), 61, 62
plot(), 15, 18, 23, 41, 53
plot(lm()), 26

predict(), 52, 55, 56
qqline(), 24
qqnorm(), 24
read.csv(), 60
resid(), 23, 24, 41
return(), 60–62
sample(), 50
sd(), 14
summary(), 18, 34, 36, 42,

45, 46
t.test(), 52, 55, 56
table(), 44, 46
tail(), 12
update(), 36, 45, 46
var(), 5

R-squared, 29, 35, 41, 49, 67,
69, 70

adjusted, 22, 29, 35, 41, 49,
67

multiple, 22
randomization, 51
residual analysis, 23, 41, 67, 69,

70
residual standard error, 22
residuals, 20, 23, 24, 35, 41
response, 15

sanity checking, 8, 44, 65
scatter plot, 16, 27, 53–55, 57,

58, 69
simple linear regression, SLR,

15, 17, 19, 24, 69
singularities, 43
slope, 18
SPEC, 10, 11, 15
square brackets, 13

78 LINEAR REGRESSION USING R

standard deviation, 14
standard error, 20, 22, 69, 70

t value, 21
TDP, 30
testing, 50, 51, 55

thermal design power, 30
training, 29, 50–52, 55, 71

variance, 5
variation, 22
visualization, 15, 27

AN INTRODUCTION TO DATA MODELING 79

	Introduction
	What is a Linear Regression Model?
	What is R?
	What's Next?

	Understand Your Data
	Missing Values
	Sanity Checking and Data Cleaning
	The Example Data
	Data Frames
	Accessing a Data Frame

	Simple Linear Regression
	Visualize the Data
	The Linear Model Function
	Evaluating the Quality of the Model
	Residual Analysis

	Multiple Linear Regression
	Visualizing the Relationships in the Data
	Identifying Potential Predictors
	The Backward Elimination Process
	An Example of the Backward Elimination Process
	Residual Analysis
	When Things Go Wrong

	Predicting Responses
	Data Splitting for Training and Testing
	Training and Testing
	Predicting Across Data Sets

	Reading Data into the R Environment
	Reading CSV files

	Summary
	A Few Things to Try Next
	Bibliography
	Index

